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The comment by van Erp et al. [1] on our recent
letter [2] throws some interesting questions about the
veracity of the Peyrad-Bishop-Dauxois (PBD) model [3]
in explaining the melting transition of oligonucleotides
in all temperature regime. Previously, the PBD model in
Langevin formalism has been shown [4,5] to describe the
transient openings and local melting “bubble” formation
at near-ambient temperature; yet the model has not
been able to reproduce the complete melting transition
and strand dissociation. Moreover, the PBD model has
suffered due to the definiteness of the on-site Morse poten-
tial even at infinite base pair separations. This results in
non-vanishing partition functions at infinite limit and is
recognized as the divergence problem. In our letter [2],
we are able to eliminate the limitation by invoking a base
pair separation-dependent damping coefficient (Γ). It is
presumed that beyond a critical distance, the nature of
molecular collisions changes due to the inevitable change
in the type of interaction with surroundings and this
change is reflected on the magnitude of Γ. According to
van Erp et al. [1], any change in the damping coefficient,
even if it imparts discontinuity in space, should not alter
the equilibrium results. Though the remark is generally
true, it is not, however, universally precise. As pointed out
in several fundamental texts [6] describing the Langevin
thermostat, the equilibrium value is independent for
“a carefully chosen range of gamma values”, implying
that beyond this range, any change in gamma value may
influence the equilibrium behavior. In order to probe
the pertinent consequences in the context of our study,
we plot fig. 1, in which we depict the dependence of the
equilibrium results on Γ. It is revealed that for a wide
range of Γ (ranging from 0.001–0.05 ps−1), equilibrium
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Fig. 1: Variation of equilibrium f with altering Γ (at T = 336K;
sequence: L42B18). Γ values at diffusion-dominated regime are
always 100 times greater in magnitude. Equilibrium values have
been computed in the temporal range of 200 ps to 200 ns (i.e.
approximately 1.98× 106 time steps).

values of f , p are independent of Γ. However, beyond these
limits, the values of f and p may sensitively depend on the
choice of Γ. In order to justify the need of taking such high
value of Γ as considered in our study, one may argue from
the point of view of the solvent effects which naturally
implicate Γ values of such high orders beyond a critical
limit of y. The spatial regime beyond ycr being essentially
diffusion dominated, one may expect the Γ value to reach
the limit such as to satisfy the intrinsic relations of pure
diffusion. In other words, one may expect Γ→ Γdiffuse =
6πµRb
m

in the limit of the diffusion-dominated regime;
where µ and Rb are the viscosity of the solution and
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the radius of the bead, respectively. Assuming realistic
values of all the relevant parameters (µ= 8.9× 10−4 Pa · s,
Rb = 2× 10−10m), we have determined Γdiffuse to be of
the order of 0.5 ps−1, which is exactly the value of Γ
taken beyond y� ycr in order to approximate diffusion-
dominated dynamics. As evident from the parametric
study (fig. 1), this value of Γ, though physically consis-
tent, affects the equilibrium value and hence, justifies the
reported results in our preceding letter [2].
Evidently, van Erp et al. [1] accept the view that the

aforementioned proposition indeed sorts out the diver-
gence problem within the simulation time scale of few
nanoseconds. Yet they suggest that it should fail in the
experimental time scale which is of the order of minutes.
According to them [1], the experimental invisibility of
spontaneous dissociation at any temperature is due to
the persistent assembly-disassembly of DNA strands in
an aqueous solution containing a large number of partic-
ipating molecules. In contrast, PBD-based Langevin
simulations are applicable for a molecule in absolute
solitude and thus, continuous assembly-disassembly
becomes inaccessible within the model framework. In
this regard, we would like to illuminate on the recent
single-molecule experiments based on sophisticated
biophysical tools such as atomic force microscope, total
internal reflection fluorescence microscope and optical
tweezers (ref. [7] and references therein). These studies
are conducted on the molecules in isolation and therefore,
the assembly-disassembly argument does not fit well
into such circumstances. Here, what van Erp et al. [1]
undermine is the multiplicative nature of the probabil-
ity distribution function P (y, t; y0) for coupled Morse
oscillators. In our letter [2], we have earlier endeavored
to solve the divergence problem for a single oscillator.
Consequently, using our expression of P (y, t; y0), van Erp
et al. [1] demonstrates that the probability of reaching
out a reasonable separation becomes substantial if the
time scale of the simulation is of the order of minutes.
However, for an oligonucleotide molecule, consisting of a
large number of such oscillators connected in a chain-like
topology, the probability of attaining y→∞ simultane-
ously for all of those is several orders of magnitude less
than the value estimated by van Erp et al. [1]. Though
the net probability is difficult to calculate analytically
due to their non-linear inter-dependence, one may expect
it to be of the order of P (y, t; y0)

N where N is the
number of base pairs. In a chain-bonded molecule like
DNA, the holistic molecular stability is intrinsically
embedded in the co-operative existence of neighboring
base-pairs and the PBD model definitely possesses this
vital ingredient through the term W (yn, ym), which effec-
tively includes both stacking and coupling interactions.
Moreover, incorporated with Langevin thermostats, this
model is extremely successful in the quantitative theo-
retical vindication of some experimental results involving
local DNA melting or bubble formation at ambient
temperature [2,4,5,8]. In this respect, we notice an

undesirable self-contradiction in the comments of van Erp
et al. Initially, they deprecate the premelting or bubble
formation as the numerical artifact (paragraph No. 3 in
ref. [1]), yet later they recognize the efficacy of the PBD
model at low temperature (paragraph No. 7 in ref. [1]).
In their comment, van Erp et al. [1] have also illustrated

some basic deficiencies of the PBD model in terms of their
apparent inabilities in accurately capturing some of the
dynamic structural aspects of DNA. For example, they
highlight mismatch pairing which is never accounted in
the model due to the on-site nature of the Morse potential.
Here, one should appreciate that the model is fundamen-
tally one-dimensional in space and its inherent diminutive
computation expenditure comes at the cost of few mole-
cular details, namely, bending, hairpin formation, self-
pairing and mismatch pairing. The under-prediction of
order parameters (f , p and l), as pointed out by van Erp
et al. [1] in their comment, arises because of these limita-
tions. However, the aforementioned difference vanishes at
elevated temperature (T > 340K) and the PBD model is
nevertheless recognized as the most imperative meso-scale
model [8] which computes DNA molecules much larger in
size than those which are typically considered by molecu-
lar dynamics (MD) based simulations, yet it is proficient
enough to reproduce both transient and equilibrium local
and global melting events [3,4]. Pertinently, it must be
mentioned that the mismatch pairing is a very transient
event and the probability of attaining a stable mismatch
pair is enormously small to consider.
To summarize, we state that the physically consis-

tent proposition of variable Γ values over the kinetics-
limited and diffusion-limited regimes essentially resolves
the divergence problem of the corresponding mathemat-
ical model. With this modification, the Langevin version
of the PBD model can efficiently reproduce experimen-
tal results in all temperature ranges. Further augmenta-
tions of the model may be directed towards the inclusion
of appropriate phenomenological terms describing hairpin
formation, mismatch pairing and other relevant events.
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