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Abstract – The time-dependent form of Tappert’s range refraction parabolic equation is
derived and proposed as an artificial boundary condition for the wave equation in a waveguide.
The numerical comparison with Higdon’s absorbing boundary conditions shows sufficiently good
quality of the new boundary condition at low computational cost.
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Introduction. – We consider wave propagation
in a two-dimensional waveguide Ω= {(x, y)| a< y < b}
described by the wave equation

Lu=
1

c2
∂2u

∂t2
− ∂

2u

∂x2
− ∂

2u

∂y2
= 0, (1)

where the sound speed c is a function of spatial variables,
c= c(x, y). For various purposes one needs to obtain one
way or unidirectional wave equations, which permit wave
propagation only in certain directions along the x -axis.
For example, for such equations we can consider x as
the evolution variable and set the initial boundary value
problems with initial data at x= x0, which are not well
posed for the wave equation itself.
The main approach to this problem consists in factor-

ization of the wave operator in eq. (1) into unidirectional
pseudodifferential factors

L=L+ ·L−, L± = ∂
∂x
±D, D=

√(
1

c2
∂2

∂t2
− ∂

2

∂y2

)
,

(2)
where the positive square root is used. Then various
approximations to the square root are used for obtaining
concrete unidirectional equations. Note that the factoriza-
tion in eq. (2) is not exact when c depends on x, so this
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approach requires optional assumptions of the asymptotic
character on this dependence. In fact,

L=L+ ·L−+ [D, ∂/∂x] =L+ ·L−−Dx,

so it is sufficient to assume that c depends on x slowly,
c= c(δx, y) for some small parameter δ. Then Dx =O(δ).
In this paper we also assume that c is regular enough with
respect to y to perform the calculations below.
In the approximation of the square root in eq. (2) the

assumption of small angle propagation with respect to the
x -axis is usually used, i.e. the operator (1/c2)(∂2/∂t2) =A
is treated as O(1) and (∂2/∂y2) = εB is O(ε) in some small
parameter ε. In the case of constant sound speed c, when
the operators A and B commute, the application of usual
rational approximations to the square root function then
yields local (differential) unidirectional wave equations.
Under the assumption that X =A+ ∂2/∂y2−K is small
for some constant K, the usual rational approximations
with respect to X can also be applied to approximate
the square root operator and its exponential (one-step
propagator). This approach is well developed for the time-
harmonic case [1–3].
With the strong dependence of c on y the operators

A and B do not commute and the applicability of the
standard rational approximations to the square root oper-
ator in eq. (2) is unclear. In fact, difficulties arise already
in consideration of the first-order (linear in B) approx-
imation. As we know now, this problem in a particular
case was first solved correctly by R. Feynman, who in his
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paper [4] derived the formula

eA+εB = eA+ ε

∫ 1
0

e(1−s)ABesA ds+O(ε2). (3)

In the late 1970s, Tappert in his paper [5] derived the
so-called range refraction parabolic equation for the time-
harmonic sound propagation in waveguides with arbitrary
dependence of the index of refraction on depth:

ivx+
1

2k0

∂

∂y

(
1

n

∂v

∂y

)
+ k0

[
n+

1

4k20

(
n2y

n3
− nyy
n2

)]
v= 0,

(4)
where n is the index of refraction and k0 is the reference
wave number. He used the expansion of the operator
square root in the form very similar to eq. (3) (see eq. (7)
below), but without any derivation. As Feynman’s paper
was also not cited, the derivation of eq. (4) in Tappert’s
paper seemed to be somewhat mysterious.
In the next section we derive the nonstationary form

of the Tappert’s equation, using the same expansion, but
derived from some elementary results of noncommutative
analysis [6]. We hope that this information will be useful
for the reader.
Note that Tappert’s equation (4) is of restricted use

for the computation of the wave field because it is not
an amplitude equation. The same is true for our new
eq. (10). As an application of the new equation we consider
its use as an artificial (absorbing, nonreflecting) bound-
ary condition (see, e.g., [7–11]) at the boundaries x= x0.
These artificial boundaries and the corresponding bound-
ary conditions are needed for restricting the computational
domain to simulate waves propagating freely in the whole
waveguide. Such a use is possible because any unidirec-
tional equation partially annihilates waves propagating in
the opposite direction.
Note that an analogous problem where the variability

of coefficients is also essential was studied by a different
method in [12,13].

Derivation of the time-dependent form of
Tappert’s range refraction parabolic equation. –
Due to the equality

∫ 1
0

f ′(sx+(1− s)y) ds= f(x)− f(y)
x− y

the first-order term in eq. (3), omitting ε, is

∫ 1
0

e(1−s)ABesA ds=
2

B

∫ 1
0

e(1−s)
1
Aes

3
A ds=

2

B
e
3
A− e

1
A

3

A− 1

A

where the numbers above the operators (now called the
Feynman numbers) define the order in which they are to

operate [4,6]. “Thus, BA may be written
2

B
1

A or
1

A
2

B” [4].

The same formula holds for some general class of operator
functions f

f(A+ εB) = f(A)+ ε
2

B
f(
1

A)− f( 3A)
1

A− 3

A

+O(ε2), (5)

as was proved few years later by Daletskiy and Krein
(see [6]).
Using eq. (5), the operator C in the expansion

(A+ εB)
1/2
=A1/2+ εC +O(ε2) (6)

can be directly computed:

C =
2

B

1

A
1/2

− 3

A
1/2

1

A− 3

A

=
2

B
1

1

A
1/2

+
3

A
1/2
=

2

B

∫ ∞
0

e−s
1
A
1/2

e−s
3
A
1/2

ds=

∫ ∞
0

e−sA
1/2

Be−sA
1/2

ds.

(7)

This formula can be verified by squaring both sides of
eq. (7), which gives the equation for C

A1/2C +CA1/2 =B.

Substitution into the last formula the expression for C
from eq. (7) immediately gives

A1/2C +CA1/2 =−
∫ ∞
0

d

ds

(
e−sA

1/2

Be−sA
1/2
)
ds=B.

The last equality and the representation (7) holds because

e−sA
1/2

u= exp

(
−s1
c

∂

∂t

)
u= u(t− 1

c
s, x, y), (8)

and the functions under consideration vanish with their
derivatives before some time moment, say, for t < 0.
By a straightforward calculation using eq. (8) we first

obtain

Cu =

∫ ∞
0

(cy)
2

c4
· s2 ·utt

(
t− 21

c
s, x, y

)
ds

+

∫ ∞
0

(
cyy

c2
− 2(cy)

2

c3

)
· s ·ut

(
t− 21

c
s, x, y

)
ds

+

∫ ∞
0

uyy

(
t− 21

c
s, x, y

)
ds

+2

∫ ∞
0

uyt

(
t− 21

c
s, x, y

)
· scy
c2
ds. (9)

Then, using the formula

ut

(
t− 21

c
s, x, y

)
=− c
2

∂

∂s
u

(
t− 21

c
s, x, y

)
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and the analogous formula for utt, we eliminate the time
derivatives and s in eq. (9) by integration by parts as
follows: ∫ ∞

0

s2 ·utt
(
t− 21

c
s, x, y

)
ds=

c

∫ ∞
0

s ·ut
(
t− 21

c
s, x, y

)
ds=

c2

2

∫ ∞
0

u

(
t− 21

c
s, x, y

)
ds.

At last, changing the variable s by snew = 2sold/c, we
find the final expression for the operator C and so the
time-dependent form of Tappert’s equation for right- and
left-propagating waves

ux± 1
c
ut∓ 1

4

(
cyy −

c2y

c

)∫ ∞
0

u(t− s, x, y)ds

∓1
2

∫ ∞
0

(cuy(t− s, x, y))y ds= 0. (10)

Differentiating eq. (10) with respect to t using the above
technique, we obtain its differential form

uxt± 1
c
utt∓ 1

4

(
cyy −

c2y

c

)
u∓ 1
2
(cuy)y = 0, (11)

which is, of course, not completely equivalent to eq. (10),
especially in computational aspects. Equation (10) is
more easily handled and, due to its nonlocality, has better
stability properties than eq. (11).
It is easy to check that for the time harmonic u=

eiωtv(x, y) eq. (11) coincides with the original range refrac-
tion parabolic equation for the field v (4). Conversely, the
Fourier transform with respect to time of eq. (4), multi-
plied by eiωt, gives eq. (11) and then, after integration with
respect to t, eq. (10).

Equation (10) as an artificial boundary condi-
tion. – In this paper we will apply eq. (10) for left-going
waves as an artificial boundary condition on the artificial
boundary x= x0, the computational domain is located
in x> x0. As was mentioned in the introduction, the
problem consists in simulating waves, propagated in the
unbounded waveguide, by solving some initial boundary
value problem in the restricted computational domain.
As far as we know, only the technique of perfectly

matched absorbing layers can be immediately applied to
the problem under consideration in the case of waveguides
with variable sound speed c (see [8]). Besides this tech-
nique the most frequently used by the practitioners
boundary conditions have the form


 J∏
j=1

(
∂

∂t
+Cj

∂

∂x

)u= 0, (12)

where Cj are some constants. In the paper [14] Higdon
proved (in the case of constant c) that the class of these
conditions contains all boundary conditions obtained
by the Padé approximations of the operators L± (the
Engquist-Majda boundary conditions [7]). It is immedi-
ately seen that the condition (12) perfectly annihilates
waves of the form f(Ct−x)φ(y) if the phase speed C
is equal to some Cj . The boundary conditions (12) are
referred in the literature as the Higdon conditions of
order J.
The main problem in any practical use of the Higdon

conditions consists in finding some (quasi)optimal set
{Cj}. For waves with given frequency spectrum it is
possible to try the phase or group velocities of the
corresponding normal modes. The automatic choice,
described in [15], also gives good results for dispersive
waves. In essentially nonstationary problems for the
wave equation the correct choice of Cj is difficult and
the optimal set {Cj} may depend on time. So in such
ambiguous situations the use of some mean value of the
sound speed c as Cj is probably more preferable.
As our boundary condition reduces to the second-order

Engquist-Majda condition in the constant sound speed
case, we expect that it will work better than the Higdon
condition of order 2 in the variable sound speed case. The
performed numerical experiments confirm this conclusion.
We must make some remarks on the well-posedness of

the introduced boundary condition. In the case of constant
sound speed one can recognize in eq. (11) the second
order Engquist-Majda boundary condition [7], which is
proved to lead to a well-posed mixed initial boundary
value problem for the wave equation. The proof consists in
checking the uniform Kreiss condition (UKC) and is valid
as well in the variable coefficient case (see, e.g., [16]). As
the third term in eq. (11) is unessential for the UKC, we
may conclude that the boundary condition (11) leads to
a well-posed mixed initial boundary value problem for the
wave equation. As eq. (10) implies eq. (11), the same is
true for the boundary condition (10).

Finite-difference discretization. – In our numerical
experiments we have used the standard second-order
explicit finite difference scheme for the wave equation on
the uniform grid {ti, xj , yl}

1

c2j,l
D+t D

−
t u
i
j,l =D

+
xD

−
x u
i
j,l+D

+
y D

−
y u
i
j,l, (13)

where uij,l = u(t
i, xj , yl)(t

i = iτ, xj = jh−h/2, yl = lh, i=
0, 1 . . . , j = 1, 2 . . . , l= 1, 2 . . .), D+x u

i
j,l = (u

i
j+1,l−uij,l)/h,

D−x uij,l = (u
i
j,l−uij−1,l)/h, and D+t ,D

−
t ,D

+
y ,D

−
y are

defined analogously.
We assume that u and all its derivatives vanish for all

t < 0. Under this assumption the boundary condition of
the Tappert type (10) on the left boundary at x= 0 are
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Fig. 1: Computational domain for the point source.

discretized as

D+x (u
i
1,j +u

i+1
1,j )/2−D+t (ui1,j +ui2,j)/(2c3/2,j)

+
τ

8

(
cyy −

c2y

c

)
3/2,j

·
i∑

m=2

(um1,j +u
m+1
2,j )

+
τ

8
(cy)3/2,j

i∑
m=2

D+y D
−
y (u

m
1,j +u

m+1
2,j )

+
τc3/2,j

4

i∑
m=2

D+y D
−
y (u

m
1,j +u

m+1
2,j ), (14)

where (·)3/2,j is the value of (·) at x= 0, y= jl. It should be
noted that in practice the sound speed c is often given by
some interpolation formula, so there is no need to calculate
its derivatives by the difference methods.
The Higdon boundary conditions were discretized as

described in [17].
The implementation of the boundary condition (10) in

the finite element framework can also be easily obtained.

Numerical experiments. – The nondimensional
computational domainfor these experiments is shown
in fig. 1. It is a rectangle {x, y| 0<x< lx = 10 ; 0< y
<Ly = 10}.
At each boundary of the extended domain A′BCD′

the hard-wall (zero Neumann) boundary conditions are
applied but waves do not reach these boundaries during
calculations. At the boundary AD of the truncated domain
ABCD the absorbing boundary conditions are imposed.
Thus solving the initial boundary value problem for the
wave equation first on the truncated domain and then on
the extended one we can estimate the quality of solutions
using error measures

E(ti) =

∑
j

∑
k

|uij,k −uE(ti, xj , yk)|∑
j

∑
k

|uE(ti, xj , yk)| (15)

and
e(ti) =max

j
max
k
|uij,k −uE(ti, xj , yk)|, (16)

where u is the solution of initial boundary value problem
on the truncated domain, and uE is the solution from

0 0.5 1

Ly/2

Ly

c(y)

y

Fig. 2: c(y) given by (18).

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
10

−3

10
−2

10
−1

10
0

t

)t(
E

Sum−error E(t)

Tappert
Higdon, order 3
Higdon, order 2

Fig. 3: Errors E(t) for the first example.

the extended domain. As the initial conditions was taken
the wave field in the homogeneous media produced by the
point source of short duration located at the center of the
extended domain.
Numerical solutions were obtained on the grid with the

space step σ= 0.1 and the sufficiently small time step τ
which guarantees stability of the finite-difference scheme.
In our experiments we compare the new boundary

condition, in the sequel called the Tappert condition, with
the Higdon boundary conditions of order J = 2 and J = 3,
with the {Cj} given by

Cj =

∫ Ly
0
c(y) dy

Ly
.

For the first example we use c(y) with a minimum at the
depth Ly/2 given by (fig. 2)

c(x) = 1− 0.5e(y−Ly/2)2/3, (17)

which gives Cj ≈ 0.8565. The point source duration was
taken to be 1.4. The results of calculations are presented
in fig. 3 and fig. 4.
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Fig. 4: Errors e(t) for the first example.
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Fig. 5: c(y) given by (18).
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Fig. 6: Errors E(t) for the second example.

In the second example the variation of c(y) is larger
(fig. 5), where c(y) is defined through

c(y) = 4− 3√
π

y∫
−∞
e(s−Ly/5)

2

ds. (18)
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10
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10
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10
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10
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10
0

t

)t(e

Max−error e(t)

Tappert
Higdon, order 3
Higdon, order 2

Fig. 7: Errors e(t) for the second example.
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Fig. 8: Errors E(t) for the third example.

In this example Cj ≈ 1.6521 and the point source duration
was taken to be 1.
The corresponding results are presented in fig. 6 and

fig. 7.
We see that the larger the variation of the sound speed

is, the better the Tappert condition works.
As the Tappert condition (10) contains no derivatives of

the sound speed with respect to the range variable, it can
be applied in the range-dependent environment without
any modifications. In the third example the following
range-dependent sound speed c(x,y) was taken:

c(x, y) = 1− 0.5e(x−Lx/2)2/3. (19)

In this example the source was positioned at
x= 3Lx/4, y=Ly/2. The results are presented in
fig. 8 and fig. 9. This and various other experiments show
that in the range-dependent case the growth of errors
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Fig. 9: Errors e(t) for the third example.

under the Tappert condition (10) is essentially the same
as in the range-independent examples.
The discrete form of the Tappert boundary condition

(14) shows that the integrals in eq. (10) are simply accu-
mulated at each time step, so the computational cost of the
new boundary condition only slightly differs from those of
the first-order Higdon condition. The computational cost
of the second-order and the third-order Higdon conditions
is about 15% and 40% greater. These estimates are very
approximate because the calculations were conducted in
the MATLAB framework.
At last we should note that the behavior of the new

boundary condition over long times is essentially as good
(or bad) as those of the Higdon conditions.

Conclusion. – In this paper the time-dependent form
of Tappert’s range refraction parabolic eq. (10) is derived.
This equation describes unidirectional, small angle (with
respect to the x -axis) wave propagation and can be
used for solving various problems of nonstationary-wave
propagation which are, in particular, ill-posed for the wave
equation (1). Despite its nonlocality in time, it is easily
calculated.
Here the new equation was applied as an artificial

boundary condition for the wave equation in a strati-
fied waveguide. Numerical experiments, performed for
comparison of the new boundary condition with Higdon’s
absorbing boundary conditions, showed its sufficiently
good quality at low computational cost.
Equation (10), regarded as an artificial boundary condi-

tion, can be considered as the first member of a new
sequence of boundary conditions which are suitable for
stratified waveguides. This sequence can be obtained by
the calculation of the following terms in expansion of the
square root operator into the Newton series (noncommu-
tative analog of the Tailor series, see [6]). To achieve good
stability properties the regularization of obtained in such

a way partial sums will be necessary. This can be done
by the application of some form of noncommutative ratio-
nal approximation (e.g., Padé appoximation ([18], Part 2,
sect. 1.5)) and will lead also to the wide angle extensions
of eq. (10).
The problems for further investigations consist in the

calculation of the following members of this sequence,
verification their well-posedness and automatization of
their numerical implementation. We intend to consider
some of these problems in our future studies. The results
of our future studies will be compared with the results
of the recent works [19,20] on the Higdon boundary
conditions, where the problem of variable coefficients was
also considered.
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