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Abstract – An equilibrium random surface model in 3d is defined which includes versions of both
the Stranski-Krastanow and Volmer-Weber models of crystal surface morphology. In a limiting
case, the model reduces to one studied previously in a different context for which exact results are
available in part of the phase diagram, including the critical temperature, the associated specific
heat singularity and the geometrical character of the transition. Through a connection to the 2d
Ising model, there is a natural association with the Schramm-Loewner evolution that has also
been observed experimentally in a nonequilibrium deposition setting.
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Introduction. – In recent times, there has been a
renascent interest in surface science promoted partly
by experimental methods like Scanning Tunneling
Microscopy (STM) and Atomic Force Microscopy
(AFM) [1], which allow direct examination of the surface
structure on an atomic length scale. Such structure is of
great relevance for understanding the technically signifi-
cant areas of heterogeneous catalysis and nanotechnology
at a fundamental level. At the same time, a system-
atic theoretical treatment is emerging, in which exact
statistical-mechanics results have played a significant
role [2]. In this letter, we address the general question
of whether equilibrium statistical mechanics can predict
the existence of mounds of molecules which are observed
experimentally on the substrate in certain systems. The
problem is that on naive entropic grounds, the mounds
might be expected to dissociate into pieces of monolayer
because of the greater available configuration space. But
this neglects entirely excluded area effects.
A notable conjecture about surface phase transitions is

due to Burton, Cabrera and Frank (BCF) [3]. Consider
a classical, low-temperature uni-axial ferromagnet (such
as the Ising system, or its lattice-gas analogues) at
coexistence. Let both equilibrium phases be present, but
organised in a symmetrical way into two different regions
of space separated by an interface or domain wall. BCF
made the bold conjecture that, because the interfacial
region is acted on by equal and opposite and therefore
cancelling mean fields, the interface should undergo
a transition like the bulk one in 2d, already found by

Onsager [4]. Later, using series expansions, Weeks, Gilmer
and Leamy [5] gave compelling evidence that there is a
phase transition, but not one of 2d Ising type. Rather,
in the high-temperature phase the interface manifests
large spatial fluctuations which invalidate the customary
thermodynamic picture of a sharp interface localised in
laboratory-fixed axes. There has never been a proof of a
roughening transition in the 3d Ising model, distinct from
the usual transition between ferromagnetic and paramag-
netic phases. It is known that the transition temperature
TR satisfies the inequality Tc(3)� TR � Tc(2), where
Tc(d) is the usual critical temperature in dimension d.
This result was established by an ingenious exact asso-
ciation with the 2d Ising magnet [6]. On the other hand,
exact results are available for associated Solid-On-Solid
(SOS) systems showing both roughening and an essential
singularity in the incremental free energy, quite unlike the
BCF conjecture [7]. This raises the interesting question of
whether the conclusions of the BCF scenario are realised
physically in another type of surface phase transition. It
is the purpose of the present paper to answer this.
To begin, we need to review three modes of crystal

surface growth: firstly, we have the Franck-van der Merwe
(FM) mode in which adsorbate is added in complete
layers [8]. The analogue at thermodynamic equilibrium is
wetting [9]; this is normally characterised by sessile drops,
contact angles and the Young rule. Although there are
no exact results yet in 3d, the situation for the Ising
model in 2d is well understood as is the equivalence
of divergent film thickness and vanishing contact angle

16002-p1



D. B. Abraham and C. M. Newman

(properly defined) [10]. The second growth mode is the
Volmer-Weber (VW) one [11]. In this, monolayer islands
of adsorbate of finite extent are formed, and then islands
grow on top of islands and so on. The natural question
is this: are there equilibrium statistical-mechanical models
which show these “turreted” configurations, which have
indeed been observed experimentally [12]? The third
growth mode is due to Stranski and Krastanov (SK) [13];
it is a hybrid of the first two, in which a finite number of
layers of FM type are laid down, followed by growth of VW
type. A significant property of the turreted crystallites is
that they can manifest greatly enhanced chemical activity
when compared with the bulk material, a matter of
considerable relevance in heterogeneous catalysis.
We now detail the purpose of this paper more closely;

we will define a three-dimensional surface model in
statistical mechanics which contains cases of the VW and
SK scenarios and for which exact results have become
available, some of which are in agreement with the BCF
predictions. Before our detailed discussion, we point
out that our modelling affords another example of the
Schramm-Loewner Evolution (SLE) [14–18], a recent
mathematical approach to interfaces in 2d systems which
is finding increasing relevance [19].

Equilibrium surface model. – We now construct
an equilibrium model analogous to the VW and SK
growth models first by prescribing allowed configurations,
secondly assigning energies to such configurations and
thirdly by giving them a Boltzmann weight. The model
represents the substrate as a flat plane and inscribes on
it a square lattice. Adatoms are physisorbed onto the
substrate and, in the spirit of Kossel-Stranski [20,21],
they are represented by cubes, the bottom faces of which
fit exactly to unit cells of the underlying square lattice.
From the outset, we exclude discommensuration and asso-
ciated elastic phenomena because our theoretical methods
appear not to be useful in that case.
Adatoms can occupy neighboring unit squares; such

configurations are energetically stabilized by assuming
attactive interactions between neighboring adatoms. On
energetic grounds, these adatoms tend to assemble into
rafts. We assume that there are no holes in the rafts
since such configurations would be energetically unstable
against filling. Moreover, this restriction is essential for
our theoretical analysis.
The energy of a configuration of rafts confined to the

first layer can be written as

E(Γ) = τL(Γ)+ (τ − ε0)A1(Γ). (1)

In the above equation, A1(Γ) is the total area of contact
of the rafts with the substrate; by construction this is the
same as the area of the upper surface. The term τA1(Γ) is
the surface energy of the upper surface while −ε0A1(Γ)
is the binding energy of the rafts with the substrate.
L(Γ) is the total length of the curve(s) formed by the
intersection of the rafts with the substrate. Γ itself is a

Fig. 1: Side view of four possible locations for adsorption of an
adatom on a train of ledges.

collection of simple closed loops, Γ = {γ1, . . . γn}. Each γj
is the intersection with the substrate of plaquettes with the
normal parallel to the substrate plane. The term τL(Γ) is
the total surface energy of these plaquettes.
At this juncture, the substrate plane is in general

partially covered by molecular rafts. We now repeat this
process by placing additional rafts strictly on top of those
already in place, once again with the exclusion of holes
in the added rafts. By “strictly on top”, we mean that
vertical overhangs are forbidden. Thus the perimeter of
any raft in the second layer must be contained within the
perimeter of some raft in the first layer. We have departed
by this point from the usual lattice gas models of wetting
and film thickening which allow internal holes.
The remaining factor to be considered is the energetics

which results when elements of the perimeters of different
rafts coincide. Ehrlich-Schwoebel [22,23] phenomenology
states that an adatom adsorbed on a terrace in a train of
ledges is more likely to be adsorbed at the up-going ledge
than the down-going one. This is explained by activation
energy for the adsorption processes —see fig. 1.
In our model, the placement of a molecule like that

numbered 4 in the figure is ruled out entirely, as we
have said above, because it is too energetic. Similarly, we
regard molecule 3 in the figure as having higher energy
than molecule 1, when not only neighboring, but also
next-nearest-neighboring interactions are included. This
is incorporated into the energetics described by (1) by
inserting an additional term:

E(Γ) = τL(Γ)+ (τ − ε0)A1(Γ)+ ε1N(1, 1), (2)

where N(1, 1) counts the total number of coincident edges
and ε1 is a positive energy. We note that molecule 1 in
the figure has higher energy than molecule 2 because of
the τL(Γ) term in (2). The specification of the model
then allows further additions of molecular rafts on top
of those already laid down. Unfortunately, as far as we
know, rather little of substance can be said about this
loop gas with configurational energy given by (2). But
if we take the limit ε1→∞, we recapture the Multi-
Ziggurat (MZ) model [24], about which there is much
useful information [25,26].
At this juncture, it is worth making the following points:

firstly, what does our equilibrium statistical mechanical
model imply about whether a raft is added on the base
plane or on top of other rafts to make multilayered
structures? Simple entropic arguments might favor the
former, but this matter can only be decided by detailed
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Fig. 2: A typical surface structure having three mounds above
the substrate. The left one is a tower, the middle one is a dimer
and the right one corresponds to a chessboard pattern of spin
values assigned by the Peierls contours. The numbers indicate
heights or the regions (or terraces).

investigation. Secondly, there is an entropic repulsion
within nests of contours describing multilayered struc-
tures, that is, within individual ziggurats as well as between
them; this is taken into account implicitly in what follows.
To begin with, in the MZ model, the square lattice

underlying the configuration space no longer contains
more than singly occupied edges. The configuration space
is defined uniquely in terms of the boundaries of the rafts,
which are simple closed walks. According to the rules
of the model, different walks can meet at corners but
they cannot have common edges, because of the assumed
limit ε1→∞ of the ledge-ledge interaction, which has just
been stipulated. Thus the configurations are the same as
those of the Peierls contours of the two-dimensional Ising
ferromagnet with fixed parallel boundary spins, say all
plus and their energy will be given by (1). An example
is shown in fig. 2.
To make the matter quite definite, take the dual lattice

Λ∗ of the original square lattice Λ; this has vertices at the
centers of the unit cells of Λ. At each such vertex i∈Λ∗,
place a spin σ(i) =±1, and for i∈Λ∗, take σ(i) =+1. In
the interaction term (τ − ε0)A1(Γ) for the configuration Γ,
the quantity A1(Γ) satisfies

A1(Γ) =A(Λ
∗)−A(Π+(∂Λ∗)), (3)

where A denotes the total area and Π+(∂Λ
∗) denotes, in

the language of Ising percolation theory, the plus cluster
of the boundary ∂Λ∗ of Λ∗ [26]. Evidently, we have a
rather curious object —namely, a planar Ising model with
a magnetic field applied to a set of sites which is random,
in that it is generated from the spin configuration.
Note, though, the special case ε0 = τ for which this field

vanishes, giving the standard planar Ising model. Finally,
an integer-valued height variable h(i) may be assigned to
each site i of Λ∗. This height is the least number of Peierls
contours crossed in going from i to ∂Λ∗.

Mounds in the Multi-Ziggurat model. – In the
case ε0 = τ , it follows from Onsager’s seminal work [4] that
there is a phase transition with logarithmically divergent
specific heat on both sides of the transition. This transition
persists for ε0 � τ , since then the substrate is covered with

a monolayer [10] thus affording a potential example of the
SK scenario. For ε0 = τ , there is no monolayer and one has
an example of the VW scenario.
A difficulty is to gauge the propensity to form mounds.

The probability that the surface at any point, say
(0, 0), has at least height k is denoted by P (h(0, 0)� k).
It satisfies for ε0 = τ , the bound [10],

P (h(0, 0)� k)� (1−m∗)k, (4)

where m∗ is the spontaneous magnetization, given by

m∗ =
(
1− (sinh(βτ))−4)1/8 . (5)

For ε0 > τ , because of the monolayer, the height h in (4)
should be replaced by h− 1. The “droplet” of the origin,
denoted D, is defined as the connected cluster of sites
r with h(r)� 1 which contains the origin. If h(0, 0) = 0,
then D is the empty set for consistency. Thus, it follows
from [24] that for ε0 > τ , the mounds, or individual
ziggurats, are finite. It has also been shown that in
the thermodynamic limit, the height and therefore also
the basal area of a typical mound, such as D, diverges as
T → Tc(2)−. Consequently, the phase transition implies
incorporating a macroscopically thick “film” on the sub-
strate in the high-temperature phase. Nevertheless, the
later work in [26] indicates that it is quite inappropriate
to think of MZ as a satisfactory model of wetting. Firstly,
above the critical temperature, the surface has a “roof”
structure, rather than the complete layer-by-layer one
associated with equilibrium FM. Secondly, the constancy
of the transition temperature is unnatural, as is the
logarithmic divergence of the specific heat on both sides
of criticality; neither of these results corresponds with
accepted ideas for wetting derived from RG and MC
studies [9].
Our version of the SK and VW scenarios allows us to

study the thermal fluctuations of two-dimensional domain
walls, both subcritically and at the transition point. In the
latter case, their statistics, in the scaling limit of vanish-
ingly small lattice scale, should follow the SLE scheme
with the parameter κ= 3 [14]. SLE(κ) curves are random
curves in the plane constructed out of a one-dimensional
Brownian motion via conformal mappings. They are
essentially the only random curves satisfying both confor-
mal invariance properties and a certain spatial Markov
property —for reviews of these and other properties of
SLE, see [15,16]. As such, they were identified, based on
conformal field theory predictions, as the only possible
candidates for scaling limits of interfaces arising in a vari-
ety of two-dimensional critical systems. The identification
of the parameter κ is aided by the fact that the fractal
dimension for κ� 8 is 1+κ/8. In particular the interfaces
of the spin clusters in the critical Ising ferromagnet were
predicted to have κ= 3, as verified in [17]. For families of
closed loop interfaces as in our level curve-Peierls contour
context, the relevant SLE machinery is that of Conformal
Loop Ensembles (CLE), as initiated in [18].
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Finally, for 0> (ε0− τ)>−τ , there is also a transition
(more strictly speaking at least one) lying somewhere
in the region T � T0(ε0), where T0(ε0) = Tc(2)(1− (ε0−
τ)/(4τ)) for 0> ε0− τ > τ [25]. For T below the transition
temperature the mounds are finite. In this case, there is
no preliminary covering of the substrate by a monolayer.
Thus this affords an example of the equilibrium VWmodel
(as does ε0 = τ); the precise location and nature of the
transition in the VW regime for ε0 < τ remain to be
elucidated. It is thus of more than passing interest that
there is recent experimental evidence [27] that the level
curves of deposited films of tungsten oxide, WO3, are
consistent with the statistics of SLE(3). This intriguing
observation combined with the connection between critical
equilibrium surface structure and SLE(3) expounded in
this paper raises the interesting question of whether
the deposition surface could be well described by an
equilibrium model at criticality.

Discussion. – In recent work on deposited films of
tungsten oxide, WO3, Saberi et al. [27] have examined
the level curves, or ledges in TLK terminology, where the
level height is the normal distance from the substrate,
by AFM microscopy and have provided evidence that
such curves are well described by SLE(3). They have
also found similar statistics at large scales in simulations
of ballistic deposition models. Their deposition setups
are driven dynamical systems and thus an a priori
precise interpretation of temperature, let alone criticality,
is unclear. On the other hand, our exactly solvable
model, although admittedly only partially so, since many
correlation functions of interest are yet to be obtained,
allows us, as an exact result, to associate SLE(3) with
the level curves (corresponding to Peierls contours) of the
critical equilibrium SK model (and for ε0 = τ the VW
model). It would be of considerable interest to investigate
experimentally the large-scale statistics of level curves
in critical equilibrium surfaces as it would be to relate
driven dynamical surfaces to critical equilibrium ones.
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