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Abstract – Using the results from Schramm Löwner evolution (SLE), we give the expression
of the fluctuation-induced force exerted by a polymer on a small impenetrable disk, in various
two-dimensional domain geometries. We generalize to two polymers and examine whether the
fluctuation force can trap the object into a stable equilibrium. We compute the force exerted on
the objects at the domain boundary, and the force mediated by the polymer between such objects.
The results can straightforwardly be extended to any SLE interface, including Ising, percolation,
and loop-erased random walks. Some are relevant for extremal value statistics.

Copyright c© EPLA, 2009

What is the force exerted by a polymer on a small
object such as a mesoscopic disk or a molecule? Simply
because the object cannot be penetrated by the polymer
it constrains its thermal fluctuations and feels an entropic
force. This question is relevant in view of the recent
surge of interest in fluctuation-induced forces, such as
Casimir forces, triggered by beautiful experiments in
critical systems [1]. Apart from Gaussian fluctuations, the
calculation of Casimir forces is difficult, and it is useful to
obtain exact results for non-trivial theories [2].
While there are many results available in two-

dimensional critical systems, some obtained recently,
originating from stochastic Löwner evolution (SLE) [3]
(see [4,5] for review), their implications in terms of
fluctuation-induced forces has, to our knowledge, not
been discussed.
In this letter, we consider a polymer restricted, e.g., by

plates or through absorption [6], to a planar geometry,
modeled by a self-avoiding walk (SAW) of N steps on
a 2d lattice of spacing a. In the limit of large N and
small a it is described by a continuum model. Start with a
polymer with one endpoint fixed. Geometry A represented
on the left side of fig. 1 is a half-plane where the polymer’s
end is fixed at the origin and free to wander to infinity.
Then place a mesoscopic object, modeled by a disk of
size �, at point z = x+ iy. The object is impenetrable to
the polymer, which is hence constrained to remain on the
left of point z. We are interested in the free energy

F =−kT lnP(z, z̄). (1)

(a)E-mail: wiese@lpt.ens.fr
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Fig. 1: (Left) Geometry A: a self-avoiding polymer fixed at the
origin and constrained to remain left of the point z. (Right)
Geometry B: same as A, the polymer being fixed at the top of
a wedge of exterior angle φ.

Here, P(z, z̄) =Z(z, z̄)/Z, where Z is the partition sum
of the polymer in the absence of the object and Z(z, z̄)
is the constrained one. Since the SAW in the continuum
limit is conjectured to be described by SLE with parameter
κ= 8/3 [7,8], we can use P(z, z̄) =P0(θ) as given by
Schramm’s formula (for κ= 8/3) P0(θ) = cos2(θ/2), where
θ is the angle with the real axis (see fig. 1). From
this we obtain the force exerted by the polymer on the
impenetrable object:

�f =−�∇F = kT �nθ
r

∂

∂θ
lnP0(θ) =−kT �nθ

r
tan

(
θ

2

)
. (2)

This result is valid in the (critical) limit a, �� r, of
object- and monomer-size small compared to r, and r
small compared to the radius of gyration Rg, noting that
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Fig. 2: Geometry C: a self-avoiding polymer constrained to
depart from x=−L, reaching x=L, and encircling both the
origin and the point z.

SLE works at fixed chemical potential instead of fixed
length [7,8]. When approaching the boundary on the x< 0
side, the object is repelled by a force diverging as 2kT/y,
with y being the distance from the wall.
We can now use conformal invariance to obtain results

in various geometries. The simplest one is the wedge
geometry B, see right side of fig. 1, with exterior angle φ,
the polymer being attached at the top of the wedge.
Under the map w= g(z) = zπ/φ, the wedge geometry (in
coordinate z = x+ iy) is mapped back to the half-plane
(in coordinate w). The case φ= 2π corresponds to the
full plane with impenetrable positive real axis. Conformal
invariance means that P(z, z̄) =P0(g(z), g(z)), where P0
is the upper-half-plane result given above. We find for the
free energy and force

FB =−kT [ln(1+ cos(αθ))− ln 2] , (3)

�fB =−kT �nθ
r

π

φ
tan(πθ/2φ). (4)

Let us now study a polymer with two endpoints fixed as
shown in fig. 2 (geometry C). Since SLE describes the
continuum limit of the SAW with fixed endpoints but
fluctuating number of steps N at the critical chemical
potential [7,8], a possible setting for an experiment is to
consider the real axis as impenetrable, fix one endpoint
at x=−L and place a hole at x=L, through which the
self-avoiding polymer passes. It is also possible to use two
symmetric holes. Assuming equilibrium for an infinitely
long polymer ensures that the chemical potential is at
its critical value. In real experiments, N is always finite,
though rather large DNA molecules exist, which could be
used in an absorption experiment similar to [6], as long as
2L�Rg.
We can now use w= g(z) = z+L

L−z , which maps geometryC back to A. It maps the half-plane onto itself, preserves
the real axis, and maps z =−L to w= 0 and z =L to
infinity, hence back to fig. 1. Note that the segment
[−L,L] is mapped to the real positive w axis. Conformal
invariance yields

FC =−kT
[
ln

(
ε(L2− r2)√

r4− 2 cos(2θ)r2L2+L4 +1
)
− ln 2

]
(5)
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Fig. 3: (Color online) (Left) Strip geometry D: a self-avoiding
polymer constrained to depart from x= 0, passing through
x= iL, and staying left of point z. (Right): mapping of the
strip to the plane.
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Fig. 4: (Color online) (Top) Strip geometry E : a self-avoiding
polymer constrained to depart from x=−∞, going to x=+∞,
and passing at the top of point z. (Bottom): mapping of the
strip to the plane.

with ε= 1 if the object is inside the area encircled by
the polymer and ε=−1 if it is outside. Computing the
force, one finds that for θ= π/2 the force is radial fr =
−2εkT/[r(1+ r2/L2)] and crosses over from 1/r to L2/r3
as r increases, being attractive if the object is inside,
repulsive if it is outside.
Instead of a half-plane, one can compute the force in

any singly connected domain as, e.g., a disk or a strip. We
consider two distinct infinite strip geometries z = x+ iy. In
the first strip geometry, D, presented in fig. 3, the strip is
0� y�L and the polymer is attached at z = 0 and z = iL
(in the sense defined above, i.e., passing through a hole at
Z = iL). Using w= tanh(πz/(2L))=(eπz/L−1)/(eπz/L+1)
to map it to geometry A of fig. 1, one finds the free energy
in geometry D

FD =−kT ln
[
1

2
+
1

2

√
2 sinh(πx/L)√

cosh(2πx/L)− cos(2πy/L)

]
. (6)

On the symmetric line y=L/2, the force is directed along
x and equal to fx =

kT
L

2π
1+e2πx/L

, which has a finite limit
at large negative x.
In the second strip geometry, E in fig. 4, the polymer

is attached infinitely far away on each side and the object
is below it. Using the map w= eπz/L, one finds the free
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energy and force (with fx = 0)

FE =−kT
[
ln (1+ cos(πy/L))− ln 2

]
, (7)

fEy =−
π

L
tan
(πy
2L

)
. (8)

In all cases considered above, the force tends to bring the
object toward a portion of the boundary. One can ask
whether it is possible to levitate the object into a stable
equilibrium away from the boundaries. For this, one needs
(at least) two polymers. This more difficult problem was
solved when the two polymers start at the same point or
nearby on the real axis and both go to infinity [9]. We
use their extension of Schramm’s formula to two SLEs
conditioned not to merge before reaching infinity. One
defines Pl, Pm and Pr = 1−Pm−Pl the relative weights of
configurations such that the object is constrained to lie on
the left of both the polymers (l), in the middle (m) or
to the right (r). Then, Pm = 45 sin2(θ). Hence, the free
energy is

Fm =−kT [2 ln(sin θ)+ ln(4/5)] . (9)

More complicated formulas hold for Pr and Fr. We obtain
for the force exerted on a point, which remains to the left of
the two polymers (l), in the middle (m) or to the right (r)

as �f = fθ�nθ with

fθl = −
kT

r

8 sin(θ)
[
− 12θ cos(θ)+ 9 sin(θ)+ sin(3θ)

]
−24 cos(2θ)θ− 36θ+28 sin(2θ)+ sin(4θ) ,

fθm =
kT

r
2 cot(θ), (10)

and fθr (θ) =−fθl (π− θ). This is plotted in fig. 5. Note
that, when the object is trapped in the middle of the
two polymers, the symmetry line θ= π/2 is a line of
equilibrium points, stable in the angular direction and
neutral in the radial one. Hence, the object is brought back
to the symmetry line and force flow lines are circles r= cst
heading toward θ= π/2. A remarkable property holds

Pm(z, z̄) = 16
5
P(1)l (z, z̄)P(1)r (z, z̄), (11)

where P(1)l/r is the (Schramm) probability for a single
self-avoiding polymer to pass left/right of the point.
Hence, if the point is in the middle, the fluctuation force
is the same as for two independent polymers, i.e., mutual
avoidance does not change the result, as can be checked
on (10). This is not true if the polymers are on the same
side of the object.
Let us consider again the geometry of fig. 2 now with

both the polymers attached at x=−L, and both passing
through a hole at x=L, see top right of fig. 5. An object
trapped in the middle acquires a free energy

Fm =−kT log
(

16r2L2 sin2(θ)

5 (r4− 2 cos(2θ)r2L2+L4)
)
. (12)
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Fig. 5: (Color online) (Top left): force along �nθ exerted by two
self-avoiding polymers on a point object, if the object is left
of the two polymers (solid), between them (dashed) or right of
them (dotted), in geometry A. (Top right) Geometry C: two
self-avoiding polymers fixed at −L, passing through a hole at
L, and constrained to remain above and below the point z.
(Bottom): equal probability lines (solid) and force flow lines
(dashed) for geometry F ; plot-units are L.

The equipotential lines are given at the bottom of fig. 5,
with the minimum on the circle of radius L, passing
through ±L (bold red). This leads to a force

�fm =
2kT

r

(L4− r4)�nr +(r2−L2)2 cot(θ)�nθ
L4+ r4− 2r2L2 cos(2θ) , (13)

which due to (11) is the sum of the forces of two inde-
pendent SAWs. There is now a semi-circle of equilibrium
points r=L, which is the image of the vertical straight
line passing through 0 of geometry A. Note that there is
no force on the line, thus no stable equilibrium.
We now argue that trapping occurs in two cases:

i) a finite-size object, e.g., a small disk and ii) a point
submitted to a thermal bath. From scale invariance, the
probability Pm(φ) that two SAWs starting at 0 avoid a
disk with center on the imaginary axis, and pass one to
the left and one to the right, depends only on the angle φ
of the cone shown on the left side of fig. 6 and is clearly a
decreasing function of φ, with Pm(0) =Pm and Pm(π) = 0.
Hence, a disk of fixed size will be pushed to infinity
along the imaginary axis. Under conformal mapping of
geometry A to C, disks map to disks and the cone to
the space between two circular arcs. Assuming conformal
invariance of the probabilities, all disks shown in fig. 6
have the same free energy. The center of a disk will thus
be pushed to the stable equilibrium point above the origin,
where the largest disk is drawn. A quantitative result is
possible for small radius ρ. For example, in the geometry

22001-p3
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Fig. 6: (Color online) Mapping of self-avoiding walks
constrained to pass to the left and to the right of disks from
geometry A to geometry C: all disks drawn correspond to the
same probability, i.e., same free energy.

A the no-hit probability for a disk centered at x+ iy reads
p≈ 1− c( ρ2y )2/3 sin2(θ) to lowest order in powers of ρ/y, as
extracted from [4,10,11], with an unknown constant c. This

gives the force kT �∇ ln p. In the symmetric case θ= π/2,
the force along the radial direction is

fr ≈ 2ckT
3

1

r

( ρ
2r

)2/3
, (14)

which decays as 1/r5/3 at large distances.
Now, consider a point-like object subjected to the

Casimir force above plus a thermal bath at tempera-
ture T ′. The equilibrium Gibbs measure for the object
is P =P(z, z̄)T/T ′/Z, and the partition sum of polymer
plus object is Z = ∫ d2z P(z, z̄)T/T ′ . Here, P is either
Schramm’s probability P0 for a single polymer, as given
in the text above eq. (2), or Pm in eq. (11) for an object
caught between two SAWs. For the latter case, equiprob-
ability lines are plotted at the bottom of fig. 5 for T ′ = T .
Depending on the geometry and T/T ′, Z is either infi-
nite, and the object diffuses to the region where the inte-
gral is divergent, or finite and the object is bound. The
latter occurs for any T ′ <T in geometry C (top right of
fig. 5), since at large r, Pd2z ∼ dθ rdr(sin2(θ)/r2)T/T ′ .
For T = T ′, a natural choice when the two polymers and
the object are in mutual thermal equilibrium, this geom-
etry is critical, hence the object diffuses to infinity. Other
geometries, however, exhibit a bound state for T = T ′.
For example, the strip geometry D has a normalizable
distribution

Pm = π

L2 ln 2

sin2(πy/L)

cosh(2πx/L)− cos(2πy/L) , (15)

and an exponentially localized bound state, with the
length set by the strip width. An algebraic bound state is
obtained if, in fig. 5 with the two polymers going through
−L and L, one rotates the real negative axis around 0
clockwise to form a wedge with angle φ< π. Then

Pm(r, θ) =Na L2a−2r2a sin2(aθ)
L4a+ r4a− 2(rL)2a cos(2aθ) (16)

with a= π/φ> 1 (the formula remains true for a< 1 as a
non-normalizable density) and πNa = 4a2/(ψ( 12a )−ψ( 12 +
1
2a )+ a+(π/ sin(

π
a
)).

Let us compare the force exerted by one and by two
polymers. Let us choose the simplest geometry E , the
infinite strip with the two polymers attached at both ends
(fig. 4), where the force is along y. For an object in the
middle, one has a restoring force toward the neutral axis
y=L/2

fmy =
2kTπ

L
cot
(πy
L

)
, (17)

while the force exerted by two polymers is fy = kT∂y lnP,
P = 24π cos ( 2πy

L

) (
1− y

L

)
+36π

(
1− y

L

)
+28 sin

(
2πy
L

)
+ sin

(
4πy
L

)
. (18)

Its ratio to the force, (8), exerted by a single polymer
increases monotonically from 16

5 (at y= 0) to
7
2 (at y=L).

For an interpretation of the first number see below.
We can now compute the force exerted by a single poly-

mer on an object placed on the boundary of the system
(e.g., the upper half-plane H). We use the nice result of [8]
arising from the so-called restriction property obeyed by
SAWs. It states that the probability that a SAW (from 0 to
infinity) does not visit a subdomain A is |g′A(0)|5/8, where
gA is the map from H\A to H, which removes A and has
gA(0) = 0, and gA(z)∼ z at infinity. Note that H\A must
be singly connected, hence the object connected to the
boundary. For a general domain D and endpoints a and
b on the boundary the probability is |g′A(a)|5/8|g′A(b)|5/8
with gA(a) = a and gB(b) = b. Note that a similar result
holds for a Brownian excursion, i.e., a Brownian from a to
b conditioned not to hit the boundary, with the exponent
5/8 replaced by 1. Finally, let us mention that for a SAW
from point a on the boundary to point b in the bulk (radial
SLE), the probability becomes |g′A(a)|5/8|g′A(b)|5/48. In
CFT language, h1,2 (with h1,2 = 5/8 for κ= 8/3) is the
dimension of the operator Φ12 creating a curve on the
boundary, 2h0,1/2 = 5/48 is the dimension of the bulk
operator Φ0,1/2 creating a curve in the bulk. Φ1,3 with
h1,3 = 2 creates two curves on the boundary conditioned
not to annihilate. When generalized, this implies that
the force exerted by n polymers with identical endpoints
on a given subdomain A connected to the boundary is
proportional to h1,n+1 = n(3n+2)/8, which explains the
ratio h1,3/h1,2 = 16/5 found above, see eq. (18), for small
y (point close to the boundary)1.
The simplest example for an object A connected to the

boundary is a vertical segment z = a+ iy with y ∈ [0, h],
which is removed by the map gA(z) =

√
(z− a)2+h2+

sign(a)
√
a2+h2. The no-hit probability is P =(

a2

h2+a2

)5/16
, and the total force �f = kT �∇ lnP is

fx =
5

8
kT

h2

a(a2+h2)
, fy =−5

8
kT

h

(a2+h2)
. (19)

To obtain the force when the polymer starts at 0 and
ends at z0 = x0+ iy0 in the half-plane, one uses the map

1For n polymers ending in the bulk the exponent 5/48 is replaced

by 2h0,n/2 =
3
8
(n
2

4
− 1
9
).
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Fig. 7: (Color online) Inset: closing-door geometry. Main plot:
h/a times the free energy, i.e., h

a
F (in units of kT ) for this

geometry, as a function of α. The curves are (from top to
bottom): h/a= 2 (dashed blue), h/a= 1 (thick, solid, red),
h/a= 0.95 (thin, solid, black), h/a= 1/2 (dotted, thick, black).
The last point on h/a= 1 curve is obtained analytically in (23).

v= g̃A(z), which preserves z0 rather than ∞. Composing
gA with a Moebius map that maps H to H, 0 to 0, and
g(z0) back to z0, one finds a complicated formula that

simplifies for x0 = a to P = ( a2

a2+h2 )
5
16 y
−5/12
0 (y20 −h2)5/24.

This gives for the force on the wall fy =− 5kT24 ( 3h
a2+h2 +

2h
y20−h2 ), which diverges as y0→ h+.

Another example is a half-disk of radius r centered at

x= a> 0. The uniformizing map is g(z) = z+ r
2

a
+ r2

z−a .
Hence, the no-hit probability is P = (1− r2

a2
)5/8, and the

object is repelled with a force fx =
5kT
4a r

2/(a2− r2).
The polymer piston is interesting for extreme-value
statistics. Consider the strip geometry D in fig. 3 and
add an impenetrable region P (the piston) for x> a. The
map ha(z) = [cosh(

π
L
a)− cosh( π

L
(z− a))]/[cosh( π

L
(z−

a))+ cosh( π
L
a)] maps the strip minus P to the upper

half-plane, and both axes y= 0 and y=L to 0. Hence,
the map that removes the piston is gA(z) = h

−1∞ (ha(z)) =
(L/π) ln(cosh(π(z− a)/L)/ cosh(aπ/L)) while leaving 0
and iL fixed. The no-hit probability is

P = |g′A(0)|5/8|g′A(iL)|5/8 = [tanh(aπ/L)]5/4. (20)

Note that this is also the cumulative distribution of
xmax = a, the maximum excursion of a SAW. The total
force exerted on the piston is fx = 5π/[2L sinh(2aπ/L)].
Consider now the “door” geometry, i.e., a segment

z = a+ teiα with t∈ [0, h], of angle α= bπ. The rele-
vant map w= g(z) has an explicit form in terms of
its inverse map z = f(w) with f(w) = a+(w−x1)[(w−
x3)/(w−x1)]b, 0<x1 <x3 with a= x1(x3/x1)b and h=
bb(1− b)1−b(x3−x1). The no-hit probability is

P = [µb(1− b(1−µ−1))]−5/8 , (21)

h/a= bb(1− b)1−bµ−b(µ− 1), (22)

where µ= x3/x1 > 1 is the solution of eq. (22). The
numerical solution is given in fig. 7. An interesting limit is

4 2 0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

0

1

Fig. 8: (Color online) The probability to avoid a wall starting
from (�, 1) to (∞, 1). Inset: the geometry in question.

represented in fig. 8, where h= 1/ sin(πk), a= �+cot(πk)
and k= 1− b tends to zero. One finds that µ= 1

wk
+

O(k0) with w=W (e�π−1) the product-log function W (z)
solution of z =W eW . This gives the no-hit probability of
the horizontal half-line i+x with x> �, plotted in fig. 8,

P =
[
1+

1

W (e�π−1)

]−5/8
. (23)

Let us now consider the fluctuation force between two
objects, here two identical slits, mediated by the polymer,
here in the symmetric position (see fig. 9). Following [12],
the map which produces two slits is for x1 <x2 <x3:

f ′(w) = w2−x22√
w2−x21

√
w2−x23

, f(w) =E
(
arcsin( w

x1
)|x21
x23

)
x3+

F
(
arcsin( w

x1
)|x21
x23

)
(x22−x23)/x3, where E, F , and K

(below) are the elliptic E, F , and K functions, and our
choice is g(0) = 0= f(0). The condition that f(x1) =
f(x3), or equivalently that 	f(x3) = 0 yields a non-
trivial condition. Define α= x1/x3, β = x2/x3. Then, for

0<α<β < 1: β(α) =

√
E(α2)−E(arcsin( 1α )|α2)
F(arcsin( 1α )|α2)−K(α2)

+1. The

walls have position ±a and height h (see fig. 9)
a= f(x1) =

[
E
(
α2
)
+
(
β2− 1)K (α2)]x3, (24)

h=	f(x2) = 	
[
E
(
arcsin(β

α
)|α2
)

+
(
β2− 1)F (arcsin(β

α
)|α2
) ]
x3. (25)

The probability is P = |f ′(0)|− 58 = | α
β2
| 58 . Figure 10 shows

a parametric plot of P, and of the interaction energy, as a
function of h/a.
Consider now a small smooth object described by

z = x+ iy, 0< y� Y (x), away from the origin, i.e., Y (0) =
Y (∞) = 0. If we find a function f(t) with only positive
Fourier components fk, such that x= x(t) =
f(t),
Y (x) =	f(t) describes the boundary for t real, then
f(z) = z+

∫
k>0

fke
ikz = z+ 1

π

∫
t
Y (x(t))
t−z is the inverse uni-

formizing map. In an expansion in powers of Y (x) and
its derivatives one finds f(z) = f̃(z)− f̃(0) with f̃(z) = z+
1
π

∫
t
Y (t)
t−z − 1

2π2

∫
t,t′ Y

′(t)Y ′(t′)( 1
t−z +

1
t′−z ) ln |t− t′|+ . . . .

22001-p5



P. Le Doussal and K. J. Wiese

3 2 1 0 1 2 3

0.5

1.0

1.5

2.0

2.5

3.0

Fig. 9: (Color online) Image of the upper half-plane, and of
lines parallel to the real axis (in thick), respectively imaginary
(dotted), under the map f(w) discussed in the text, which
creates two slits, with x1 = 1, x2 = 1.991, and x3=3.
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Fig. 10: (Color online) (Left): the probability that a polymer
does not touch two slits, as a function of h/a for the geometry
of fig. 9. (Right): the free energy in units of kT (solid line),
compared to the sum of the free energies for a slit left and a
slit right (dashed line), as a function of h/a. The difference is
the interaction free energy mediated by the polymer.

This yields the free energy

F = kT 5
8π

[∫
t

Y (t)

t2
−
∫
t,t′
G(t, t′)Y ′(t)Y ′(t′)+ . . .

]
,

(26)
where 2πG(t, t′) = (t−2+ t′−2) ln |t− t′|+1/(tt′). For a
single object centered at position a, Y (t) = h(t− a), the
repulsive force fx =−∂aF decays as fx ≈ 5kTA/(4πa3)
at large distances, with a prefactor A=

∫
t
Y (x(t)) =∫

t
h(t)− 1

π

∫
tt′ h

′(t)h′(t′) ln |t− t′|+O(h3). In the case of
two objects, (26) yields their interaction, to lowest order,
mediated by the polymer. For small objects, one finds
Fint =−kT 5

4π∂a∂bG(a, b)
∫
t
ha(t)

∫
t′ hb(t

′).
The interaction of a small object at z in the bulk with

an arbitrary object on the boundary removed by the
map g(z) is obtained from the left passage probability

P, generalizing Schramm’s formula to P = |g′(0)| 58 12
[
1+

�g(z)
|g(z)|

]
.

The previous calculations can be extended to fluctuation
forces for an object impenetrable to the interface described
by SLE for any κ. For illustration, the force in geometry
A at θ= π/2 reads

�f =−kT �nθ
r

2Γ
(
4
κ

)
√
π Γ
(
4
κ
− 12
) . (27)

Extension to Ising at Tc assumes that the object interacts
only with the interface induced by changes in boundary

conditions, not the bubbles proliferating at criticality,
which seems artificial. Physically meaningful is the
polymer at the Θ point [13], conjectured to corre-
spond to κ= 6. Further results follow from recent works:
i) From [14] one obtains the force exerted by a loop-erased
random walk (κ= 2) on an object of arbitrary shape.
ii) From the double left-passage probability of a SAW [15]
around points z1, z2 one computes the Casimir interac-
tion between two points. Interestingly, when they are
close and away from the boundary the interaction force is
attractive and diverges for y≈ y1 ≈ y2, θ≈ θ1 ≈ θ2 as |f | ∼
kTA(1− cos θ)y−2/3|z1− z2|−1/3 with A=−

√
3πΓ(5/6)/

[3Γ(−2/3)] = 0.287457 . . . . Near the boundary for small
y1 = y2 = y, Fint =−kTy4/(5x1x2(x1−x2)2)+O(y6), a
repulsive interaction for x1 <x2/3.
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