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2 Complex Systems Group, Department of Energy and Environment, Chalmers University of Technology
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Abstract – Mesoscopic-particle–based fluid models, such as dissipative particle dynamics, are
usually assumed to be coarse-grained representations of an underlying microscopic fluid. A
fundamental question is whether there exists a map from microscopic particles in these systems to
the corresponding coarse-grained particles, such that the coarse-grained system has the same bulk
and transport properties as the underlying system. In this letter, we investigate the coarse-graining
of microscopic fluids using a Voronoi-type projection that has been suggested in several studies.
The simulations show that the projection fails in defining coarse-grained particles that have a
physically meaningful connection to the microscopic fluid. In particular, the Voronoi projection
produces identical coarse-grained equilibrium properties when applied to systems with different
microscopic interactions and different bulk properties.

Copyright c© EPLA, 2009

Introduction. – Despite the tremendous computing
power available today at the technological high-end of
super computing and distributed computing, detailed
first-principles molecular simulations are still limited to
structures and mechanism on small time and length scales.
For instance, molecular dynamics (MD), a well-developed
framework for molecular simulations, is at present capable
of accurate modeling of systems up to typically millions of
atoms on a time scale of about 100 ns [1]. This is enough
to simulate small viruses [2] or molecular motors [3], but
to model larger parts of a complex biomembrane or an
entire organelle in a biological cell, there is a gap in
time and length scale that will not be closed in any near
future by increasing the computational resources. This
limits our understanding of organization and dynamics at
mesoscopic scales —a challenge that applies to biology,
soft and hard matter physics [4]— and has resulted in
large efforts invested in developing simulation techniques
that allow for exploration of the mesoscopic regime.
In soft matter physics, mesoscopic-particle–based

techniques have gained popularity as tools for simulating
complex fluids. Dissipative particle dynamics, smoothed
particle dynamics, and a range of descending variations

(a)E-mail: kolbjorn@chalmers.se

are representative examples. A basic premise of these
methods is that there exists a valid mesoscopic-particle
representation of fluid that in principle can be derived
bottom-up, with interactions that give the correct hydro-
dynamic behavior in the large system limit. The aim of
this letter is to re-examine the validity of this premise.
We focus on the foundation of the class of models referred
to as dissipative particle dynamics.
Dissipative particle dynamics (DPD) was introduced in

the early nineties by Hoogerbrugge and Koelman [5] as a
simulation method for complex fluids. The method was
motivated partly by the need to counter the problems
of broken isotropy and Galilean invariance in lattice gas
methods (LGA), partly by the need of a simpler simulation
scheme for complex fluids. The remedy was found in the
construction of a molecular dynamics (MD) like scheme:
a set of “fluid particles” interacting with pairwise (and
central) conservative, dissipative and stochastic forces.
This construction ensures local conservation of linear
and angular momentum, a necessity for obtaining correct
hydrodynamic behavior in the macroscopic limit [6,7]. The
original version of DPD was later modified by Español and
Warren [8] into the form most frequently encountered in
the literature today. In this version the dissipative and
stochastic forces fulfill a fluctuation-dissipation relation
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such that the steady state solution of the simulated system
(in the continuous time limit) is the Gibbs canonical
ensemble.
With the advantages of being a simple off-lattice

and hydrodynamically correct method, DPD is often
mentioned as one of the best approaches to model and
simulate complex fluids on different time and length
scales. As DPD has become a popular mesoscopic simu-
lation tool, it has been applied to an extensive range
of systems, from suspensions [9], polymer systems [10],
phase separations [11], and membrane and vesicle forma-
tion [12,13], to modeling of red blood cells [14] and the life
cycle of a minimal protocell [15]. The span in applications
is reflecting the flexibility of DPD, allowing it to be easily
adapted to different types of systems, on different time
and length scales. But the same flexibility also forces an
important question: what is the physical meaning of a
DPD particle?
Throughout the literature the DPD particles are

described in various ways as “fluid packets” [16], “. . . fluid
regions, rather than individual atoms and molecules” [17],
and “. . . not a solvent molecule but a fluid element, which
represent clusters of solvent molecules” [18]. These are
just a few samples, but representative of how DPD is
assumed to connect to an underlying microscopic system.
In summary, the consensus seems to be that a DPD
particle represents some sort of clustered representation
of particles in the corresponding microscopic system.
How, and more important, if this connection can be
formulated is not known.
Considering this background we believe it is timely

and necessary to ask if the concept of mesoscopic fluid
particles has a sound physical interpretation. In technical
terms the question is: does there exist a projection that
applied to a microscopic fluid results in DPD dynamics
on the mesoscopic level? The existence of this type of
projection is crucial for particle-based methods to have
a dynamical interpretation, where the trajectories of
the coarse-grained particles have a meaning beyond re-
creating certain equilibrium thermodynamical properties
of the system.
This view of DPD as being a coarse-grained representa-

tion is often put forward in the literature, usually by refer-
ring to the Mori-Zwanzig projection operator framework.
There are also several reports on the formal derivation
of DPD from projection operators, e.g. the GENERIC
framework developed by Español [19]. However, it is
harder to find studies that more explicitly state which
projection operator to use in the derivation of DPD. The
best known attempt to work out a bottom-up derivation
of DPD with an explicit projection was done by Flekkøy
and Coveney [20]. By assuming the DPD particles to be
Voronoi cells, they obtain the equations of motion for the
mesoscopic system through a formal coarse-graining of
the microscopic dynamics. While the resulting equations
are DPD-like they do not answer if the actual dynamics
of the Voronoi cells, as given by the projection, can be

Fig. 1: Periodic Voronoi tessellation in two dimensions defined
by coarse-grained particles (gray). Each microscopic particle
(black) is assigned to its closest coarse-grained particle and
lies within the Voronoi cell of its assigned particle. The Voronoi
cells vary both in number of microscopic particles within their
borders, and their shape.

approximated by the standard DPD equations. Another
study appeared more recently, where a projection operator
approach was used to derive the equations of motion for
clusters of particles [21]. In this derivation, however, the
result relies on the assumption that the microscopic parti-
cles cannot move between clusters, which seems irreconcil-
able with the fluid character of the microscopic dynamics.
In this letter we investigate using MD simulations how

the equilibrium and transport properties of microscopic
fluids carry through to the mesoscopic scale. This is done
with projections defined through Voronoi tessellation of
the microscopic dynamics. In the light of the results, we
discuss the implications for mesoscopic-particle methods.

Coarse-graining. – To obtain a coarse-grained repre-
sentation of a microscopic particle system, it is necessary
to define a mapping from the microscopic phase space to
a coarse-grained level, reducing the number of degrees of
freedom. There are many ways to choose a projection. But
having in mind the picture of DPD as “fluid particles”, a
projection defined by Voronoi tessellation of the simula-
tion box is arguably a representation that is natural, as
previously pointed out in the literature [20,22].
The procedure works like this: a set of coarse-grained

particles, or clusters, are placed in the same simulation box
as the microscopic system. The number of clusters depends
on the level of coarse-graining. Each microscopic particle
is assigned to the coarse-grained particle closest to itself;
this defines a Voronoi tessellation of the simulation box. In
fig. 1 this is illustrated for the two dimensional case with
periodic boundaries, with coarse-grained particles in gray
and microscopic particles in black. Note that the shape of a
Voronoi cell can vary as well as the number of microscopic
particles within a cell. We denote the average cluster
size, i.e. the average number of microscopic particles per
cluster, by N .
With each microscopic particle assigned to a coarse-

grained particle, we define a mapping of the microscopic
dynamics to the coarse-grained level in terms of the
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microscopic variables mass mi, position ri, and momen-
tum pi, where i= 1, . . . , n denotes microscopic particle i.
The coarse-grained dynamics can be written as

Mk =
∑
i

ξk(ri)mi

/∑
l

ξl(ri),

Pk =
∑
i

ξk(ri)pi

/∑
l

ξl(ri),

Vk = Pk/Mk, (1)

where Mk, Pk, and Vk are the mass, momentum, and
velocity of cluster k, respectively. In general, ξk(ri) is a
non-negative function which gives the relative contribu-
tion of particle i to cluster k. This formulation guarantees
conservation of momentum and mass. In the Voronoi
projection ξk(ri) is 1 if microscopic particle i is closest
to coarse-grained particle k, otherwise 0. The projected
mass of a coarse-grained particle is just the sum of all the
microscopic mass within its Voronoi cell, as the projected
momentum is the sum of the microscopic momentums
within the same cell.

Simulation setup. – We investigate how the equilib-
rium and transport properties of a coarse-grained fluid
reflect the properties of the underlying system by running
simulations along two directions: first, we examine how
the coarse-grained system depends on the average cluster
size N . This is done using a Lennard-Jones fluid as under-
lying system, simulated with standard Velocity Verlet MD
using the shifted and truncated pairwise Lennard-Jones
potential with reduced units,

UL-J(r) = 4
[
r−12− r−6− r−12c + r−6c

]
H(rc− r), (2)

where r is the distance between particle pairs, rc is cutoff
radius, and H(x) is the Heaviside step function which is
unity for x> 0 and zero elsewhere. In the Lennard-Jones
simulations, rc = 3.
Second, we apply an identical projection, average cluster

size N = 10, to microscopic systems with different interac-
tion potentials to find out how sensitive the projection is
to the details of the underlying system. In addition to the
Lennard-Jones fluid, we simulate fluids with quadratic and
linear potentials

UQ(r) = 0.5arc(1− r/rc)2H(rc− r) and (3)

UL(r) = arc(1− r/rc)H(rc− r). (4)

The pre-factor a defines the magnitude of the force. Two
quadratic potential fluids are simulated: UQ1 with a= 25
and rc = 1 and UQ2 with a= 100 and rc = 1. The linear
potential fluid is simulated with a= 25 and rc = 1.
All microscopic systems are simulated in the micro-

canonical ensemble (constant volume, energy and number
of particles) using periodic boundary conditions. The
parameter settings are time step τ = 0.005, particle
density ρ= 0.776 and temperature T = 0.861 (all in

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Distance

R
D

F

Fig. 2: Radial distribution functions of coarse-grained systems.
The curves correspond to systems with a different average
number of microscopic particles per cluster (from left to right:
3, 10, 20, 30, 40). The Lennard-Jones fluid is the underlying
system in each case.

reduced units), chosen so that the Lennard-Jones system
is in the fluid regime. This corresponds to the situation
when DPD is usually assumed to represent the mesoscopic
behavior. All projections are done with 200 clusters, with
box size and number of microscopic particles varied
accordingly to obtain the correct average cluster size
N . The cluster positions are initially random, and then
updated using the velocity in eq. (1). The simulations are
run to equilibrium or steady state equilibrium before any
measurements are obtained. All results are averaged over
four measurements from independent simulations. Both
equilibrium and transport properties of the coarse-grained
system are measured directly from the resulting cluster
coordinates and momentums.

Simulation results. – For a particle system interact-
ing with pairwise and central forces there is a one-to-one
correspondence between the radial distribution function
(RDF) and the pairwise potential [23]. This means that
the equilibrium properties of a particle system at given
density and temperature are uniquely defined by the RDF.
In order to check that the projection conserves the equi-
librium properties, we compare the coarse-grained RDFs
and the bulk moduli for the different microscopic and
coarse-grained systems. We also measure the mass distri-
bution of clusters, and relate this to the standard DPD
model. How the transport properties of the microscopic
system translate to the projected system is examined by
comparing the diffusion and viscosity at each level.

Radial distribution functions. The RDFs of a coarse-
grained Lennard-Jones fluid, using average cluster sizes
from N = 3 to N = 40, are presented in fig. 2. The RDFs
are characterized by having a slow, almost linear, climb
from zero outwards, before smoothing off to unity, the
slope depending on the size of the cluster. In terms of
interactions, this kind of behavior is typically of “soft”
interactions, such as the interactions typically used in
standard DPD, and can be attributed to an excluded
volume effect of the Voronoi cells.
Close to zero, the RDFs flatten out. This behavior can

be attributed to individual clusters having zero mass, and
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Fig. 3: Upper panel: radial distribution functions of differ-
ent microscopic systems. (a) Lennard-Jones potential UL-J;
(b) quadratic potential UQ1 ; (c) quadratic potential UQ2 ; and
(d) linear potential UL. Lower panel: radial distribution func-
tions of corresponding coarse-grained systems, all with average
cluster size N = 10.

this region must therefore be treated with care. This has
been described previously in ref. [22]. The RDF for the
underlying Lennard-Jones fluid is given by curve (a) in
fig. 3.
To explore the sensitivity of the projection to the under-

lying system, we applied the projection with average
cluster size N = 10 to different microscopic systems. The
RDFs for the microscopic systems and the correspond-
ing cluster systems are all plotted in fig. 3. While the
microscopic systems have clearly distinguishable RDFs,
the corresponding cluster RDFs are almost identical. The
discrepancy in the cluster RDFs for small r is an artifact
of the projection as discussed above.

Bulk modulus. For the different microscopic systems,
we estimated the bulk moduli B (or the inverse compress-
ibility) using the expression

B = ρ

(
∂p

∂ρ

)
T

, (5)

where p is the pressure of the system, and the partial deriv-
ative is evaluated at constant temperature T . To obtain
a numerical estimate for the derivative, the microscopic
systems were simulated with densities slightly higher and
lower than ρ= 0.776. For each density the pressure was
measured using the virial expansion, and the derivative
was calculated as pressure difference over density differ-
ence. The bulk moduli for the corresponding clusters were
obtained in the same way. To be able to apply the virial
expansion in this case, we derived the effective pairwise
interactions of the clusters, estimated from the RDFs

Table 1: Bulk modulus for the different microscopic systems
and corresponding coarse-grained systems. The numbers in
parentheses are the uncertainty of the last digit.

Potential BM BC
UL-J 8.1(1) 0.25(1)
UQ1 5.4(2) 0.25(1)
UQ2 2.6(1) 0.25(1)
UL 15.7(1) 0.25(1)
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Fig. 4: Diffusion of clusters plotted against average cluster
size N (black squares). The diffusion of each cluster divided
by N−0.43 is approximately constant (gray circles and dashed
line), indicating a scaling law of the diffusion. The diffusion
of the underlying Lennard-Jones fluid is shown as a reference
(diamond).

using a inverse Monte Carlo technique [23,24]. The result-
ing bulk moduli are listed in table 1. The microscopic
systems have different moduli, while the coarse-grained
systems are almost identical and seemingly independent
of the underlying system.

Diffusion. The diffusion coefficients were calculated
from the mean square displacement of each system.
Projections of a Lennard-Jones fluid, using different
average cluster sizes N , produce the coefficients plotted
in fig. 4 (black squares), with standard deviation on the
scale of the marker size. The diffusion coefficient of the
underlying Lennard-Jones fluid is given by the diamond
marker. We observe that the diffusion falls off with
increasing N . The values we get by dividing each diffusion
coefficient with the empirical factor N−0.43 are nearly
constant (gray circles and dashed line), and suggest an
approximate power law relation between cluster size and
cluster diffusion.
The diffusion coefficients for the different microscopic

systems and corresponding cluster systems (all with N =
10) are listed in table 2, together with the ratio between
the coefficients. The variation in the ratios implies that
the diffusion not only scales with N , but also with the
underlying dynamics.

Viscosity. The shear viscosity was measured using a
Poiseuille flow method [25]. The external force used to
drive the system to a steady state flow was applied to the
microscopic system, not affecting any steps in the coarse-
graining. Measurements were done for the cluster systems
for average cluster sizes N = 3, 20, 30 and 40. As a check
on the influence of the box size on the simulations, we
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Table 2: Diffusion coefficients for the different microscopic
systems and corresponding coarse-grained systems. The last
row shows the ratio between the coefficients. The numbers in
parentheses are the uncertainty of the last digit.

Potential DM DC DM/DC
UL-J 0.0642(3) 0.0168(4) 3.82
UQ1 0.527(4) 0.083(2) 6.35
UQ2 0.248(1) 0.058(2) 4.28
UL 1.47(3) 0.200(3) 7.35

Table 3: Viscosity values µC for cluster systems with different
average cluster size N , projected from the same Lennard-Jones
system. The Lennard-Jones viscosity values µL-J are shown as
a check for box size sensitivity. The numbers in parentheses are
the uncertainty of the last digit. The last column lists standard
deviations in cluster size.

N µC µL-J σN
3 1.94(8) 1.80(5) 1.24
20 1.96(4) 1.85(3) 5.79
30 1.98(4) 1.83(3) 8.50
40 2.02(4) 1.87(1) 10.39

also measured the viscosity of the Lennard-Jones fluid in
each case. The resulting values are listed in table 3. The
viscosity is consistently higher (approximately 5–10%)
for the clusters, but does not vary significantly with size
(at least not more than the microscopic system does).

Mass distribution. Because the projection allows
microscopic particles to move between the clusters, the
sizes of the individual clusters fluctuated around the mean
value N . Figure 5 contains mass distributions measured in
systems with average cluster sizes from N = 3 to 40, all
projected from the same Lennard-Jones fluid. The distri-
bution becomes broader with increasing N . In fact, due
to the fluctuating volumes in the Voronoi tessellation, the
standard deviation scales proportionally to N (table 3).
This in contrast to the standard DPD setup, where all
particles have constant, and usually identical, mass.

Discussion. – In this letter we have investigated the
feasability of a microscopic foundation of coarse-grained
particle dynamics. Specifically, we try to answer the
following question: does a Voronoi projection produce a
coarse-graining that can be interpreted as mesoscopic-
particle dynamics with pairwise interactions? The
motivation behind the question is that a class of simula-
tion techniques, related to the so called dissipative particle
dynamics (DPD) method, is based on the assumption
that this, or perhaps some other, projection actually
produce well-defined particle dynamics on a mesoscale.
The results that we find can be summarized as follows:

the self-diffusion rate of the cluster centers obey a scaling
law (empirically observed); the viscosity of the projected
system is similar to the underlying system, and does not
depend on the number of particles; the standard deviation
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Fig. 5: Histograms showing the size distribution for cluster
systems with different average cluster size N . From left to right
are the histograms for systems with N = 3, 10, 20 and 40.

of average cluster mass scales approximately linearly with
the cluster mass, and implies that the clusters do not
get a more well-defined mass as the system grows; the
cluster-cluster radial distribution function is very similar
for different microscopic systems, also reflected in the bulk
modulus (and compressibility) of the system.
For all microscopic systems, the bulk modulus is much

higher than in the corresponding coarse-grained system.
This difference can be partly attributed to that we do not
take the internal pressure of the coarse-grained particles
into account. A more serious difficulty is that the coarse-
grained bulk modulus is approximately the same for
all systems, whereas at the microscopic level the bulk
modulus varies significantly. It is difficult to see how
the coarse-grained dynamics could simultaneously have
an interaction that is consistent with the microscopic
dynamics and recover the correct bulk modulus in the
macroscopic limit. This is especially worrying when we
consider that the standard approach to choosing the
DPD parameters is to tune the interaction strength so
that the macroscopic bulk modulus (or equivalently, the
compressibility) is correct.
A potential source of the problems with the Voronoi

projection is that the momenta of the cluster centers
changes discontinuously when a microscopic particle
moves from one cluster to another. In order to avoid
this situation, we lifted the restriction that a micro-
scopic particle only belongs to its closest neighboring
coarse-grained particle. This was done by replacing
ξk(ri) in eq. (1) by a weighing function which decreases
exponentially with the distance between the cluster center
and the microscopic particle. See ref. [20] for details. A
microscopic particle is then distributed among several
coarse-grained particles, contributing to the mass and
momentum of each coarse-grained particle according to
the weighing functions. This results in a soft clustering
rather than the sharp Voronoi partition used above.
The RDFs for this type of projection do not converge
even within half a million time steps. In contrast, the
RDF of the microscopic particles converge in less than
a few thousand time steps after an initial temperature
equilibration period of ten thousand steps. The slow
convergence is caused by coarse-grained particles close
together having strongly correlated dynamics, staying
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together for long periods. While not completely under-
stood, it seems to be connected to the mass variations
in clusters. Therefore, this projection is not a practical
choice for coarse-graining.
Another type of projection that fits the fluid particle

view, is to have the positions of the coarse-grained parti-
cles defined through K -mean clustering of the underlying
particles [26]. The main motivation behind such a projec-
tion is that it more directly reflects the spatial density
variations in the microscopic system, whereas the Voronoi
projection does not have such a direct connection to the
physical distribution of the underlying particles. However,
as we have shown in earlier work [26], using this projection
is problematic as it results in a coarse-grained dynamics
which suffers from discontinuous trajectories, and it does
not conserve the momentum of the particles.
Our main conclusion is that the Voronoi projection

has severe shortcomings as a means to define effective
particles at a coarse-grained level from the dynamics of
the microscopic particles. However, alternative projections
fail even more drastically. It is therefore an open question,
does there exist a projection from microscopic dynamic to
the mesoscopic level such that the mesoscopic level has
a particle dynamic? We view this as a serious challenge
to the community working with mesoscopic-particle–based
simulation methods. If DPD and related methods are
to become well established the question about which
projection does define the coarse-graining is critical.
There are two ways to argue around the problems

pointed out in this letter. First, it is still possible that the
Voronoi projection does produce a useful coarse-graining,
however not in terms of a mesoscale point particle
dynamics. The meso-particles can instead be interpreted
as nodes in a dynamic mesh representing local mechanical
variables. Smoothed dissipative particle dynamics [27]
may be viewed as an attempt in this direction even
though the model still uses the particle interpretation at
the mesoscale (which is central if local momentum conser-
vation is to be respected). It should be remembered that
with this interpretation it is no longer possible to measure
observables such as compressibility and diffusion directly
from the trajectories of the meso-particles or rather
the nodes in the mesh. As a consequence most of the
machinery usually applied in connection with DPD must
then be abandoned. Alternatively, as in [20] one abandons
the idea of point particle dynamics at the mesoscopic
level and simulates the motion of the Voroni regions.
The second remedy is to view DPD as a pure top-

down modeling approach and simply ignore that there is
no clear connection to the microscopic dynamics. Rather,
one then treats each mesoscopic particle as a thermody-
namic system, as in the GENERIC framework [19,28], in
which the equation of state can be directly specified [29].
With this perspective it is natural to tune the parame-
ters in the model to fit with macroscopic observables.
However, we must stress that in this case it is unclear if
the DPD model has any value as a dynamic model outside

equilibrium. On the other hand, the lack of a clear connec-
tion between the scales is not unique. For example the
classical measurement problem shows that the connec-
tion between quantum mechanics and molecular dynam-
ics is not exactly crystal clear. However, we think that it
is unlikely that the relation between MD and mesoscale
simulation methods should hide similar level of complex-
ity, especially since the two levels essentially deals with
the same type of representation of the respective system.
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