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PACS 74.70.Dd – Ternary, quaternary, and multinary compounds (including Chevrel phases,
borocarbides, etc.)

PACS 74.62.Bf – Effects of material synthesis, crystal structure, and chemical composition
PACS 74.62.Dh – Effects of crystal defects, doping and substitution

Abstract – We report the realization of superconductivity by an isovalent doping with phosphorus
in LaFeAsO. X-ray diffraction shows that, with the partial substitution of P for As, the Fe2As2
layers are squeezed while the La2O2 layers are stretched along the c-axis. Electrical resistance
and magnetization measurements show emergence of bulk superconductivity at ∼ 10K for the
optimally doped LaFeAs1−xPxO (x= 0.25–0.3). The upper critical field at zero temperature is
estimated to be 27T, much higher than that of the LaFePO superconductor. The occurrence of
superconductivity is discussed in terms of chemical pressures and bond covalency.
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Introduction. – Superconductivity can be induced by
carrier doping in an insulator, semiconductor, and even
metal. Representative examples are shown in hole-doped
La2CuO4 [1], electron-doped BaBiO3 [2], and electron-
doped TiSe2 [3]. Recently, superconductivity at 26K
was discovered in LaFeAsO by either electron doping
with florine [4] or hole doping with strontium [5]. Subse-
quent replacements of La with other rare-earth elements
raised the critical temperatures (Tc) over the McMillan
limit (39K) [6–8]. By electron doping with thorium in
GdFeAsO, Tc has reached 56K [9]. The discovery of
high superconducting transition temperatures in these
Fe-based compounds has generated great interest in the
scientific community [10].
As a prototype parent compound of the new class of

high-temperature superconductors, LaFeAsO crystallizes
in ZrCuSiAs-type structure [11], which consists of insulat-
ing [La2O2]

2+ layers and conducting [Fe2As2]
2− layers. In

addition to the carrier doping in [La2O2]
2+ layers, partial

substitution of Fe with Co [12,13] and Ni [14] also leads to
superconductivity. Although the valence of the doped Co
and Ni seems to remain 2+, electron carriers were believed
to be induced owing to the itinerant character of the 3d

(a)E-mail: ghcao@zju.edu.cn
(b)E-mail: zhuan@zju.edu.cn

electrons [13]. That is to say, the Fe-site substitution by
Co/Ni still belongs to the scenario of carrier doping.
Apart from chemical doping, superconductivity was

also observed via applying hydrostatic pressure in the
parent compounds such as AFe2As2 (A=Ca, Sr, Ba and
Eu) [15–17] and LaFeAsO [18]. As “chemical pressures”
may be produced by an isovalent substitution with smaller
ions, we have tried the substitution of As by P in
EuFe2As2 [19]. As a result, superconductivity appears
below 26K. Nevertheless, the superconductivity is then
influenced by the subsequent ferromagnetic ordering of
Eu2+ moments, and diamagnetic Meissner effect cannot
be observed.
LaFeAsO is a prototype parent compound of

ferroarsenide superconductors, showing spin-density-
wave (SDW) antiferromagnetic ground state [20]. In
contrast, the other end member LaFeAs1−xPxO (x= 1)
is a superconductor of ∼ 4K, showing non-magnetic
behavior in the normal state [21]. According to a recent
theory [22], partial substitution of P for As in the
ferroarsenides may induce a quantum criticality, which
could induce superconductivity. Therefore, the effect of P
doping in LaFeAsO is of great interest. In this letter, we
demonstrate bulk superconductivity in LaFeAs1−xPxO
at ∼ 10K with the evidences of both zero resistance and
Meissner effect. This result establishes a stronger evidence
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that “chemical pressures” and/or bond covalency may
stabilize superconductivity in the ferroarsenide system.

Experimental. – LaFeAs1−xPxO polycrystalline
samples were synthesized by solid state reaction in
vacuum using powders of LaAs, La2O3, FeAs, Fe2As, FeP
and Fe2P. Similar to our previous report [13], LaAs, FeAs,
Fe2As, FeP and Fe2P were presynthesized, respectively.
La2O3 was dried by firing in air at 1173K for 24 hours
prior to using. All the starting materials are with high
purity (� 99.9%). The powders of these intermediate
materials were weighed according to the stoichiometric
ratios of LaFeAs1−xPxO (x= 0, 0.1, 0.2, 0.25, 0.3, 0.35,
0.4, 0.5 and 0.6), thoroughly mixed in an agate mortar,
and pressed into pellets under a pressure of 2000 kg/cm2,
operating in a glove box filled with high-purity argon.
The pellets were sealed in evacuated quartz tubes, then
heated uniformly at 1373K for 40 hours, and finally
furnace-cooled to room temperature.
Powder X-ray diffraction (XRD) was performed at

room temperature using a D/Max-rA diffractometer with
Cu-Kα radiation and a graphite monochromator. The
detailed structural parameters were obtained by Rietveld
refinements, using the step-scan XRD data with 10◦ �
2θ� 120◦.
The electrical resistivity was measured using a standard

four-terminal method. The measurements of magneto-
resistance and Hall coefficient were carried out on a
Quantum Design physical property measurement system
(PPMS-9). The measurements of dc magnetic properties
were performed on a Quantum Design Magnetic Property
Measurement System (MPMS-5). Both the zero-field-
cooling (ZFC) and field-cooling (FC) protocols were
employed under the field of 10Oe.

Results and discussion. – Figure 1 shows the XRD
patterns for LaFeAs1−xPxO samples. The sample of x= 0
shows single phase of LaFeAsO. With the P doping over
20%, small amount of Fe2P impurity appears. When the
doping level exceeds 50%, however, the impurity phase
tends to disappear. The inset of fig. 1 plots the calculated
lattice parameters as functions of nominal P content. Both
a-axis and c-axis decrease with increasing x. Compared
with the undoped LaFeAsO, a-axis decreases by 0.34%
while c-axis shrinks by 0.87% for LaFeAs0.7P0.3O. Thus,
the isovalent substitution of As with P indeed gener-
ates chemical pressure to the system. We note that
the shrinkage in the basal planes is similar to that in
EuFe2(As1−xPx)2, but the compression along c-axis is not
as large as that in EuFe2(As1−xPx)2 [19].
The crystallographic parameters were obtained by

the Rietveld refinement based on the ZrCuSiAs-type
structure. An example of the refinement is seen in fig. 2.
The reliability factor Rwp is 8.9% and the goodness of
fit is 1.7, indicating fairly good refinement for the crys-
tallographic parameters. Table 1 compares the structural
data of the undoped and P-doped (by 30 at.%) samples.
It is clear that As/P atoms are closer to the Fe planes

Fig. 1: (Colour on-line) X-ray powder diffraction patterns
at room temperature for the LaFeAs1−xPxO samples. Small
amount of Fe2P impurity is marked by asterisks. The inset
plots the lattice parameters as functions of nominal phosphorus
content.

Fig. 2: (Colour on-line) An example of Rietveld refinement
profile for LaFeAs0.7P0.3O. The Fe2P impurity was included
in the refinement.

for the P-doped compound, resulting in the flattening of
the Fe2As2 layers. Interestingly, La atoms move toward
the Fe2As2 layers, leading to the increase of the La2O2
layers. Thus the chemical pressure induced by the P
doping actually causes compression in Fe2As2 layers, but
stretching in La2O2 ones, along the c-axis. This explains
why the decrease in c-axis in LaFeAs1−xPxO is not as
so much as that in EuFe2(As1−xPx)2. Besides, with
the flattening of the Fe2As2 layers, the bond angle of
As-Fe-As increases obviously. The large As-Fe-As angle
may account for the relatively low Tc in LaFeAs1−xPxO
system (to be shown below), according to the empirical
structural rule for Tc variations in ferroarsenides [23].
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Table 1: Crystallographic data of LaFeAs1−xPxO (x= 0 and
0.3) at room temperature. The space group is P4/nmm.
The atomic coordinates are as follows: La (0.25,0.25,z); Fe
(0.75,0.25,0.5); As/P (0.25,0.25,z); O (0.75,0.25,0).

Compounds LaFeAsO LaFeAs0.7P0.3O

a (Å) 4.0357(3) 4.0219(1)

c (Å) 8.7378(6) 8.6616(3)

V (Å3) 142.31(2) 140.10(1)
z of La 0.1411(2) 0.1435(1)
z of As 0.6513(3) 0.6475(3)

La2O2 thickness (Å) 2.466(2) 2.486(1)

Fe2As2 thickness (Å) 2.644(2) 2.555(1)

Fe-Fe spacing (Å) 2.8536(3) 2.8439(1)
As-Fe-As angle (◦) 113.5(1) 115.1(1)

ρ
ρ

Fig. 3: (Colour on-line) Temperature dependence of resistivity
for LaFeAs1−xPxO samples. The inset shows an expanded plot.
The data are normalized for comparison.

The temperature dependence of resistivity (ρ) for
LaFeAs1−xPxO samples is shown in fig. 3. The ρ of the
undoped LaFeAsO shows anomaly at 150K, where a
structural phase transition takes place [20]. On doping
10% P, the anomaly is hard to see and ρ exhibits semicon-
ducting behavior below 100K. For x= 0.2, ρ is found to
decrease quickly below 7K, suggesting a superconducting
transition though zero resistance is not achieved down to
3K. For x= 0.25 and 0.3, ρ drops sharply at ∼ 11K, and
the midpoint superconducting transition temperatures
Tmidc are 10.3K and 10.8K, respectively. With further
increasing x to 0.4, Tmidc decreases to 5K, and the super-
conducting transition becomes broadened. For x= 0.5
and 0.6, only kinks are shown below 10K in the ρ(T )
curves, suggesting that the superconducting phase has a
very small fraction.
Superconductivity in LaFeAs1−xPxO is confirmed by

the dc magnetic susceptibility (χ) measurements, shown

πχ

χ

ρ

Fig. 4: (Colour on-line) Temperature dependence of dc
magnetic susceptibility of LaFeAs1−xPxO (0.25� x� 0.6)
samples. The applied field is 10Oe. Note that the background
signals due to ferromagnetic Fe2P impurity was deducted to
show the superconducting transitions clearly. The inset shows
the superconducting transition temperature and the supercon-
ducting magnetic shielding percentage as functions of doping
level x.

in fig. 4. After deducting the magnetic background signals
of the ferromagnetic Fe2P impurity, diamagnetic transi-
tions are obvious for the superconducting samples. Strong
diamagnetic signals can be seen below 11K for samples of
x= 0.25 and 0.3 in both ZFC and FC data. The volume
fraction of magnetic shielding (ZFC) at 2K achieves 65%
for x= 0.3, indicating bulk superconductivity. For the
samples of x= 0.2 and 0.4, however, the magnetic shield-
ing fraction at 2K is less than 2% and 5%, respectively,
suggesting inhomogeneity of the P doping for these two
samples. The samples of x= 0.5 and 0.6 only show trace
and broad diamagnetic signals, consistent with the kinks
in the above resistivity measurements. Thus one would
expect non-superconductivity for a uniform samples of
x� 0.2 and x� 0.4. The superconducting phase diagram
is depicted in the inset of fig. 4. A dome-like Tc(x) curve
is displayed.
Figure 5 shows the temperature dependence of resis-

tivity under magnetic fields for LaFeAs0.7P0.3O. As
expected, the resistive transition shifts towards lower
temperature with increasing magnetic fields. The broad
transition tails under magnetic fields are probably due
to the superconducting weak links in grain boundaries
as well as the vortex motion. Thus, we define Tc(H) as
a temperature where the resistivity falls to 90% of the
normal-state value. The initial slope µ0dHc2/dT near Tc
is −3.59T/K, as shown in the inset of fig. 5. The upper
critical field µ0Hc2(0) is then estimated to be ∼ 27T
by using the Werthamer-Helfand-Hohenberg (WHH)
relation, Hc2(0)≈ 0.691|dHc2/dT|Tc [24]. The value of
µ0Hc2(0) exceeds the Pauli paramagnetic limit [25]
(HP (0)≈ 1.84Tc tesla for an isotropic s-wave spin-singlet
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Ω

µ

Fig. 5: (Colour on-line) Temperature dependence of the elec-
trical resistance of the LaFeAs0.7P0.3O sample around Tc in
fixed applied magnetic fields. The inset shows the temperature
dependence of the upper critical magnetic fields.

superconductor) by 35%. Similar observations have been
reported in LaFeAsO1−xFx [26] and LaFe1−xNixAsO [14]
systems. The upper critical field of LaFePO is far below
its Pauli paramagnetic limit [27], revealing the difference
between LaFePO and LaFeAs0.7P0.3O superconductors.
Figure 6 shows that the Hall coefficient (RH) of

LaFeAs0.7P0.3O is negative in the normal state, suggesting
the dominant charge transport by the electron conduction.
The normal state RH(T ) exhibits very strong temperature
dependence (especially at low temperatures), compared
with the LaFeAsO1−xFx superconductors [28,29]. This
indicates that the multiband effect is more significant
in the P-doped superconductors. The room temperature
RH value is −5.7× 10−9m3 C−1, very close to that of
the undoped LaFeAsO (−4.8× 10−9m3 C−1), supporting
that the P doping does not induce extra charge carriers.
Below 10K, |RH | decreases very sharply, consistent with
the superconducting transition. The non-zero |RH | is due
to the non-zero resistance under high magnetic fields.
The |RH | of undoped LaFeAsO increases rapidly below
T ∗ ∼ 155K because of the structural phase transition
and the subsequent SDW ordering [28]. Such a transition
cannot be detected in LaFeAs0.7P0.3O. Since the P doping
does not change the number of Fe 3d electrons, the severe
suppression of SDW order by P doping suggests that
Fermi surface nesting is unlikely to account for the SDW
ordering in the LaFeAsO.
Now, let us discuss the occurrence of superconductivity

in P-doped LaFeAsO. While the chemical-pressure-
induced superconductivity in P-doped LaFeAsO basically
agrees with the static-pressure–induced superconductivity
in LaFeAsO [18], there is difference between the two kinds
of pressure. The hydrostatic pressure generally produces
a homogeneous effect, but chemical pressure may be
selective to a particular structural unit in a complex

Ω

µ

Fig. 6: (Colour on-line) Temperature dependence of Hall coef-
ficient for the superconductor LaFeAs0.7P0.3O, in comparison
with that of the parent compound LaFeAsO. The inset shows
the field dependence of the Hall resistance at several fixed
temperatures.

compound. In the present LaFeAs1−xPxO system, P
doping leads to the squeezing (stretching) in Fe2As2
(La2O2) layers, respectively, along the c-axis. Band calcu-
lations [30] suggest that the relative positions of As/P
to Fe planes affect the electronic structure. When arsenic
is moved closer to the iron planes, the two-dimensional
pocket with dxy character in the LaFeAsO evolves into
a three-dimensional pocket with d3z2−r2 character. This
might correlate with the three-dimensional supercon-
ductivity in the two-dimensional system [31]. Thus, the
appearance of superconductivity in P-doped LaFeAsO
suggests that the d3z2−r2 band should be important for
superconductivity. It is noted that the La-site replacement
with smaller rare-earth elements, which also produce
chemical pressures, influences little on the SDW order,
and induces no superconductivty [32]. A possible reason
is that the chemical pressure is applied mainly in La2O2
rather than Fe2As2 layers.
In addition to the above structural points of view, the

difference in covalency for the bonding of Fe-As/P may
also play a role for superconductivity. The P substitution
for As in the undoped iron pnictides was proposed as
a means to access the magnetic quantum criticality in
an unmasked fashion [22]. The narrow superconduct-
ing region in LaFeAs1−xPxO supports the scenario of
quantum criticality with magnetic fluctuations for the
superconducting mechanism. Nevertheless, much work is
needed to address this issue.
In summary, we have discovered bulk superconductivity

in LaFeAs1−xPxO by the isovalent substitution of As with
P. Superconductivity emerges in the region of 0.2<x< 0.4
with the maximum Tc of 10.8K. Unlike previous doping
strategy in LaFeAsO, the P doping does not change the
number of Fe 3d electrons. This chemical-pressure–induced
superconductivity in ferroarsenides contrasts sharply with
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the case in cuprates, where superconductivity is always
induced by doping of charge carriers into an AFM Mott
insulator. We suggest that both the chemical pressure
(applied selectively to the Fe2As2 layers) and the cova-
lency of Fe-P bonding may lead to quantum criticality,
facilitating superconductivity.
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