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Abstract – Paired states, trions and quarteting states in one-dimensional SU(4) attractive
fermions are investigated via exact Bethe ansatz calculations. In particular, quantum phase
transitions are identified and calculated from the quarteting phase into normal Fermi liquid, trionic
states and spin-2 paired states which belong to the universality class of linear field-dependent
magnetization in the vicinity of critical points. Moreover, unified exact results for the ground-state
energy, chemical potentials and complete phase diagrams for isospin S = 1/2, 1, 3/2 attractive
fermions with external fields are presented. Also identified are the magnetization plateaux of
mz =Ms/3 and m

z = 2Ms/3, where Ms is the magnetization saturation value. The universality
of finite-size corrections and collective dispersion relations provides a further test ground for
low-energy effective field theory.

Copyright c© EPLA, 2009

Experimental advances with higher-spin fermionic
systems of ultracold atoms present a unique opportunity
to rigorously test the current understanding of molecular
superfluids and more generally to probe the nature of
quantum many-body systems. Three-component ultracold
fermions give rise to a phase transition from three-body
bound states called trions into the BCS pairing state [1–4].
In particular, spin-(3/2) interacting atomic fermions have
been predicted to exhibit a quarteting phase, i.e., a
bound state of two BCS pairs [2,4,5], and BCS pairing
with total spin 2 [6]. Such molecular superfluids have
currently received considerable interest in the context of
the one-dimensional (1D) lattice Hubbard model of ultra-
cold atoms [2,4,7,8] and degenerate quantum gases [9–12]
due to new progress in experimental realization of highly
degenerate atomic gases [13].
Furthermore, recent experiments on systems of ultra-

cold atoms confined to one dimension (1D) [14–16] have
revived interest in Bethe ansatz (BA) integrable models

(a)E-mail: Murray.Batchelor@anu.edu.au

of interacting bosons and multi-component fermions. The
nature of “no diffraction” in the many-body scattering
matrix of 1D integrable models results in key features of
quantum many-body physics which are specified by the
phenomena of spin-charge separation, scaling dimensions
and universality classes of quantum phase transitions and
criticality [17–19]. In this letter, we study complete phase
diagrams and quantum phase transitions in integrable 1D
SU(4) attractive fermions with external magnetic fields.
We demonstrate that quantum phase transitions from
quarteting states into phases of normal Fermi liquid, trions
and spin paired states are fully controlled by Zeeman
splittings. In particular, the unified exact results obtained
for isospin S = 1/2, 1, 3/2 attractive fermions display a
simplicity and universality which gives insight in under-
standing high-spin paired states and spin liquid behaviour
in multi-component interacting fermions.

The model. – We consider a δ-function (contact
potential) interacting system of N atomic fermions
with equal mass m which may occupy four possible
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Fig. 1: (Colour on-line) Depiction of phase transitions from quarteting states into (A) normal Fermi liquid, (B) trions and (C)
bound pairs. Ellipses denote spin-neutral bound states.

hyperfine levels (|i〉, i= 1, . . . , 4) labeled by isospin
states ±3/2, ±1/2 and constrained by periodic boundary
conditions to a line of length L. The Hamiltonian [20,21]

reads H=H0+HI +Ez with kinetic energy H0 =− �22m ×∑N
i=1

∂2

∂x2i
, interaction energy HI=g1D

∑
1�i<j�N δ(xi−xj)

and Zeeman energy Ez =
∑4
i=1N

iεiZ(µ
i
B , B). Here N

i is
the number of fermions in state |i〉 with Zeeman energy
εiZ (acting as a chemical potential µi [3]) determined by
the magnetic moments µiB and the magnetic field B. The
spin-independent contact interaction g1D remains between
fermions with different hyperfine states and preserves the
spins in each hyperfine states, i.e., N i with i= 1, . . . , 4
are good quantum numbers. Although these conditions
appear somewhat restrictive, utilizing the broad Feshbach
resonances, it is possible to tune scattering lengths
between different states close to each other to form
high-degeneracy Fermi gases [13,14,22]. Thus the model
still captures the essential physics relevant to the multiple
phases of molecular superfluids. The coupling constant
g1D =−�2c/m with interaction strength c=−2/a1D
determined by the effective 1D scattering length a1D [23].
For simplicity, we choose the dimensionless units of
�= 2m= 1 and use the dimensionless coupling constant
γ = c/n with linear density n=N/L.
For an irreducible representation [4N43N32N21N1 ],

a four-column Young tableau encodes the numbers of
unpaired fermions (N1), bound pairs (N2), trions (N3) and
quarteting states (N4) with Ni =N

i−N i+1 and N5 = 0.
For convenience in calculation, we rewrite the Zeeman
energy as EZ =−

∑3
i=0HiNi. Here H0 =

∑4
i=1 ε

i
z/4

is irrelevant because N0 =N is fixed. The other
values H1,H2,H3 are related to Zeeman splittings
∆i+1 i = ε

i+1
Z − εiZ with i= 1, 2, 3 via the relation
H1H2
H3


= 1

4


3 2 12 4 2
1 2 3




∆21∆32
∆43


. (1)

We shall find that equally spaced (linear) Zeeman split-
ting, i.e., ∆a+1 a =∆ for a= 1, 2, 3, drive a smooth phase
transition from a quarteting phase into a normal Fermi
liquid, as depicted in part (A) in fig. 1. Unequally spaced

(nonlinear) Zeeman splittings may trigger spin-neutral
bound states which are illustrated in parts (B) and (C)
in fig. 1. It follows from the relation (1) that for linear
Zeeman splitting, the magnetic moments of a trion, a
bound pair and the unpaired fermion are 32 , 2 and

3
2 ,

respectively. The quarteting state remains a spin singlet.
The energy eigenspectrum is given in terms of the

quasimomenta kj of the fermions via E =
∑N
j=1 k

2
j , which

satisfy the BA equations [20,21]

exp(ikjL) =

M1∏
l=1

kj −Λ(1)l + i12c
kj −Λ(1)l − i 12c

M�−1∏
β=1

Λ
(�)
α −Λ(�−1)β + i12c

Λ
(�)
α −Λ(�−1)β − i 12c

=

−
M�∏
γ=1

Λ
(�)
α −Λ(�)γ + ic
Λ
(�)
α −Λ(�)γ − ic

M�+1∏
δ=1

Λ
(�)
α −Λ(�+1)δ − i 12c
Λ
(�)
α −Λ(�+1)δ + i12c

. (2)

Here j = 1, . . . , N and α= 1, . . . ,M�. The parameters Λ
(�)
α

with �= 1, 2, 3 are the spin rapidities, where we denote

Λ
(0)
α = kα and Λ

(5)
α = 0. The quantum numbers are given

by Mi =
∑3
j=iNi+1, M0 =N .

Charge bound states. – For attractive interaction,
the BA equations (2) admit charge bound states and spin
strings. In particular, the SU(4) symmetry acquires three
kinds of charge bound states: quarteting states, trions and
bound pairs. The patterns of these bound states and spin
strings determined by (2) underpin the nature of quantum
statistics and many-body effects in the atomic system.
In the weak-coupling regime, i.e., L|c| � 1, we find

that the imaginary parts iy of the charge bound states
are the roots of Hermite polynomials Hk of degree k.
Specifically, Hk(

L
2|c|y) = 0, with k= 2, 3, 4 for a bound

pair, a trion and a quarteting state, respectively. This
result is indicative of a universal signature of many-body
cooperative effects driven by dynamical interaction. The
real parts of the quasimomenta deviate slightly from the
values determined by Fermi statistics for the c= 0 case.
In this weak-coupling limit, the BA equations (2) reduce
to Gaudin model-like BA equations [24] which describe
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the multiple-charge bound-state scattering. Using these
root patterns, we explicitly obtain the energy (in units
of �2/2m)

E

L
≈ π

2

3

κ∑
k=1

kn3k +π
2
κ−1∑
j=1

jnj

κ∑
k=j+1

nk

κ∑
�=j

n�

−|c|

2
κ−1∑
i=1

κ∑
j=i+1

i(j− 1)ninj +
κ∑
j=1

j(j− 1)n2j


. (3)

This result unifies the ground-state energy results
for two-, three- and four-component fermions (where
κ= 2, 3, 4, respectively) for weakly attractive interaction.
In this result the densities of unpaired fermions, BCS
pairs, trions, and qarteting states are denoted by na =
Na/L with a= 1, 2, 3, 4, respectively. The ground-state
energy (3) is dominated by the kinetic energy of composite
particles and unpaired fermions and has a mean-field
theory configuration, where the interaction energy
accounts for density density interaction between charge
bound states and between charge bound states and
unpaired fermions. For the weak-coupling limit, spin-
neutral bound states are unstable against thermal and spin
fluctuations. They form a gapless superconducting phase.
On the other hand, for the strongly attractive regime
L|c| � 1, the imaginary parts of the bound states become
equal-spaced, i.e., a qarteting state has the form ki =

Λ
(3)
i ± i3|c|/2, Λ(3)± i|c|/2; the trion state is kj =Λ(2)j ±
i|c|, λ(2)j and for the bound pair kr =Λ

(1)
r ± i|c|/2.

The corresponding binding energies are given by
ε� = c

2�(�2− 1)/12 with �= 1, 2, 3, respectively. Substi-
tuting these bound-state root patterns into the BA
equations (2), we explicitly obtain their real parts Λ�i,j,r,
with �= 1, 2, 3. This leads to a unified expresion

E

L
≈

4∑
k=1

π2n3k
3k

(
1+
2

|c|Ak +
3

c2
A2k

)
−

4∑
�=2

n�ε� (4)

for the ground-state energy for two-, three- and four-
component attractive fermions (in units of �2/2m) where
the functions A1 = 4n2+2n3+

4n4
3 , A2 = 2n1+n2+

8n3
3 +

3n4
2 , A3 =

2n1
3 +

16n2
9 +n3+

92n4
45 and A4 =

n1
3 +

3n2
4 +

23n3
15 +

11n4
12 . The functions Ak reveal the scattering

signature in different channels, for example, n1 does
not appear in A1 due to the lack of s-wave scattering
for unpaired fermions. We note that for two-component
attractive fermions the terms involving n3 and n4 should
be excluded [25] whereas for three-component attractive
fermions n4 does not appear. The unified structure of the
ground-state energy (4) can be amended with appropriate
Ak functions for higher-spin fermions.

Charge bound states in equilibrium. – The BA
equations (2) in principle give the complete quantum
states of the model. However, at finite temperatures,
the true physical states become degenerate. In the

thermodynamic limit, L,N →∞ with N/L fixed, the
grand partition function is given by Z = tr(e−H/T ) =
e−G/T [17,26,27], where the Gibbs free energy G=
E+EZ−µN −TS, the chemical potential µ, the Zeeman
energy EZ =−

∑3
i=0HiNi and the entropy S are given

in terms of densities of charge bound states and spin
strings subject to the BA equations (2). The equilibrium
states are determined by the minimization of the Gibbs
free energy, which gives rise to a set of coupled nonlinear
integral equations —the thermodynamic Bethe ansatz
(TBA) equations. Following the TBA treatment for
spin-(1/2) attractive fermions [17], we obtain the dressed
energy equations

ε(4)(τ) = 4(τ2−µ4)− a3 ∗ ε(1)(τ)− [a2,4] ∗ ε(2)(τ)
− [a1,3,5] ∗ ε(3)(τ)− [a2,4,6] ∗ ε(4)(τ),

ε(3)(λ) = 3(λ2−µ3)− a2 ∗ ε(1)(λ)− [a1,3] ∗ ε(2)(λ)
− [a2,4] ∗ ε(3)(λ)− [a1,3,5] ∗ ε(4)(λ),

ε(2)(Λ) = 2(Λ2−µ2)− a1 ∗ ε(1)(Λ)− a2 ∗ ε2(Λ)
− [a1,3] ∗ ε(3)(Λ)− [a2,4] ∗ ε(4)(Λ),

ε(1)(k) = k2−µ1−∑3i=1 ai ∗ ε(i+1)(k),

(5)

which will be used to study quantum phase transitions at
zero temperature. In these equations the function aj(x) =
1
2π

j|c|
(jc/2)2+x2 and aj ∗ ε(a)(x) =

∫ Qa
Qa
aj(x− y)ε(a)(y)dy is

the convolution. Furthermore, we have used the abbrevi-
ation ai,j,k = ai+ aj + ak. We denote the dressed energies
ε(a) with a= 1, . . . , 4 and the effective chemical potentials
µa =Ha/a+µ+ c

2(a2− 1)/(12) with H4 = 0 for unpaired
fermions, pairs, trions and quarteting states, respectively.
The negative part of the dressed energies ε(a)(x) for
x�Qa corresponds to the occupied states in the Fermi
seas with the positive part of ε(a) corresponding to
the unoccupied states. The integration boundaries Qm
characterize the “Fermi surfaces” at ε(m)(Qm) = 0.
The Gibbs free energy per unit length at zero

temperature is given by G=
∑4
m=1

m
2π

∫ Qm
−Qm ε

(m)(x)dx.

The dressed energy energy equations (5) describe the
band fillings with respect to Zeeman splittings Hi
and chemical potentials and provide complete phase
diagrams and quantum phase transitions for the model.
Solving eqs. (5) by iteration among the relations
−∂G
∂µ
= n, − ∂G

∂Hi
= ni, i= 1, 2, 3 and the Fermi point

conditions ε(m)(Qm) = 0 gives the effective chemical
potentials

µκ

π2
≈ n

2
κ

k2

(
1+
2Aκ
|c| +

3A2κ
c2

)
+

Bκ · 
I
|c| +

3 
Bκ · 
A
c2

, (6)

which characterize Fermi surfaces of stable spin-
neutral states and unpaired states. In this equation

we have introduced an inner product 
Bk · 
A with

A= (A1, A2, A3, A4) and 
Bκ = (B

1
κ, B

2
κ, B

3
κ, B

4
κ). Here
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B4 = (
2n31
9 ,

n32
8 ,
46n33
405 ,

11n34
288 ),


B3 = (
4n31
9 ,

8n32
27 ,

2n33
27 ,

23n34
270 ),


B2=

(
4n31
3 ,

n32
6 ,
16n33
81 ,

n34
16 ) and


B1 = (0,
2n32
3 ,

4n33
27 ,

n34
18 ). The Ai

are as given above and 
I is the identity vector.
The expression (6) for the chemical potentials µκ

contains the previous results for isospin S = 1/2, 1 Fermi
gases [10,25,28]. We have found that the energy (4)
derived from the discrete BA equations for arbitrary
population imbalances can also be obtained from
E/L= µn+G+n1H1+n2H2+n3H3. This indicates
that the BA spin-neutral states comprise the equilibrium
stable states in the thermodynamic limit.

Magnetism and quantum phase transitions. –
The low-energy excitations split into collective excitations
carrying charge and collective excitations carrying spin.
This leads to the phenomenon of spin-charge separation.
The charge excitations are described by sound modes with
a linear dispersion. The spin excitations are gapped [7,9]
with a dispersion relation εν(p) =

√
∆2ν + v

2
νp
2 where

∆ν is the excitation gap and vν is the spin velocity in
spin branch ν. However, for strong attractive interaction
the low-energy physics is dominated by charge density
fluctuations. This is because the spin wave fluctua-
tions are fully suppressed by a large energy gap at low
temperatures. This configuration is evidenced by the
universality class of finite-size correction to the ground-
state energy E(L,N)−LE∞0 =−π�C6L

∑4
k=1 vk, where the

central charge C = 1 for the U(1) symmetry and charge
velocities vk ≈ �πnkmk

(1+ 2
|c|Ak) with k= 1, . . . , 4 are the

charge velocities for unpaired fermions and charge bound
states. For the singlet ground state, the spin velocity

vs ≈
√
5|c|√
2
(1+ 1

3|γ|) in the spin-(3/2) hyperfine branch,

which is divergent due to the energy gap.
We find from the dressed energy equations (5) that

quantum phase transitions driven by Zeeman splittings
can be determined by three independent external field-
energy transfer relations

H1 =
5

4
c2+u1−u4,

H2 = 2c
2+2(u2−u4),

H3 =
7

4
c2+3(u3−u4).

(7)

The Fermi surfaces and charge bound states are fully
controlled by the Zeeman splitting parameters. The
complete phase diagrams are determined by eqs. (7) and
certain combinations of these equations. Without loss of
generality, we consider only terms up to order of 1/|γ| in
the following analysis.
Using the energy transfer relations (7), we find that

linear Zeeman splitting ∆ lifts the SU(4) symmetry
to U(1)4 symmetry for |γ| � 1, i.e., linear Zeeman
splitting does not favor spin-neutral bound states
(recall part (A) in fig. 1). The lower critical field

∆c1 ≈ 5c26 − n
2π2

384 (1+
7
18|γ| ) diminishes the gap, thus the

excitations becomes gapless. Using the definition of

80 100 120
Zeeman splitting ∆
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Fig. 2: (Colour on-line) Magnetization as a function of the
Zeeman splitting parameter ∆. The curves shown, obtained
from (7) with the effective chemical potentials given in (6),
are for linear Zeeman splitting (dashed line) with c=−10
and n= 1 and unequally spaced Zeeman splitting (solid line)
with c=−8 and n= 1. The 2/3 magnetization plateau occurs
through subtle tuning of the Zeeman splitting parameters.
Here, e.g., ∆21 = f∆43 = f∆32 with f = 0.36.

magnetization mz =Mz/Ms with M
z = 32n1+2n2+

3
2n3

and Ms =
3
2n, we see that in the vicinity of ∆c1, the

system exhibits a linear field-dependent magnetization of
the form mz = 192(∆−∆c1)/(nπ2) with a finite suscep-
tibility χ= ∂mz/∂∆≈ 192/(nπ2). This result provides
a testing ground for low-energy field theory [18,19].
When the Zeeman splitting ∆ is greater than the upper

critical field ∆c2 ≈ 5c26 + 2n
2π2

3 (1− 2
9|γ| ) the system is fully

polarized into a normal Fermi liquid. For the intermediate
regime, ∆c1 <∆<∆c2, the quarteting state and unpaired
fermions coexist. The phase transition at the critical point
∆c2 belongs the same linear field-dependent universality
class. A plot of the magnetization vs. Zeeman splitting is
given in fig. 2.
For nonlinear Zeeman splitting the quarteting state

can break into two spin-2 bound pairs as depicted in
part (C) of fig. 1. In order to trigger such a paired
phase, we let ∆43 =∆32 in the relation (1). In fig. 3 we
demonstrate the resulting interplay between the quantum
phases of quarteting states (phase Q), spin-2 pairs (phase
D) and unpaired fermions (phase U). We see clearly that

the quarteting states are stable for ∆21 <
5
3c
2− n2π2192 (1+

7
18|γ| )−∆43 and ∆43 < 43c2− n

2π2

192 (1+
13
36|γ| )− ∆213 . The

phase diagram shown in fig. 3 is determined by the
first two equations of (7) and ∆21/2 = c

2/4+µ1−µ2
describing the mixed D+U phase. In order to clearly
see magnetization plateaux, we choose a simple linear

relation ∆21 = f∆43. We then find that f <
3
7 (1− 5π2

14γ2 )

and magnetization plateaux mz = 0, 2Ms/3,Ms occur,
where Ms = 3n/2 is the saturation magnetization (see
fig. 2). This is obvious because the lines fixed by the slope
f simultaneously pass the Q, D and U phases. Moreover,
if the Zeeman splitting ∆32 is large enough, the phases D

50003-p4
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Fig. 3: (Colour on-line) Typical phase diagram in the ∆21-
∆43(∆32) plane with ∆43 =∆32 in the strong-coupling regime
c=−8 and n= 1. In this case we see clearly that Zeeman
splitting can trigger a quantum phase transition from a
quarteting state (phase Q) into two spin-2 bound pairs (phase
D), as depicted schematically in part (C) of fig. 1. Other phases
involved are unpaired fermions (U) and mixed phases.

Fig. 4: (Colour on-line) Typical phase diagram in the
∆21(∆32)-∆43 plane with ∆21 =∆32 in the strong-coupling
regime c=−5 and n= 1. In this case we see clearly that
Zeeman splitting can trigger a quantum phase transition from
quarteting states (phase Q) to trions (phase T), as depicted in
part (B) of fig. 1. Other phases involved are unpaired fermions
(U) and mixed phases.

and D+U form the same phase diagram for spin-(1/2)
interacting fermions with polarization [28].
If we set ∆21 =∆32 in the relation (1), the Zeeman

parameters may trigger a phase transition from quarteting

states into trions (recall part (B) in fig. 1). Figure 4
shows an exact phase diagram in the ∆21(∆32)-∆43 plane.
Varying the Zeeman splitting ∆43 and ∆21 reveals smooth
phase transitions from quarteting states into trions (phase
T ) or a normal Fermi liquid (phase U). Similarly, we
choose ∆43 = f∆21 and see that magnetization plateaux

mz = 0,Ms/3,Ms occur if f >
5
2 (1+

π2

18γ2 ). The critical
points for the plateaux can be analytically determined
from the first and third equations in (7) and an additional
equation ∆= 23c

2+µ1−µ3 for the mixed T +U phase.
Actually, if ∆43 is large enough, the model reduces
to attractive fermions with three hyperfine levels [10].
We point out that all phase transitions are of second
order with a linear field-dependent magnetization in the
vicinities of critical points.
To conclude, we have presented unified exact results

for complete phase diagrams and quantum phase transi-
tions from quarteting states into spin-2 paired states and
trions in 1D SU(4) fermions with population imbalance.
The ground-state properties and magnetic effects provide
a testing ground for low-energy effective field theory and a
bench mark for experiments with multicomponent ultra-
cold fermionic atoms.
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