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Abstract – I consider a system in which an atom in a superposition of momentum eigenstates
of a periodic potential is subject to periodic random phase jumps in that potential. If the j-th
state in superposition is “marked” by giving the (j− 1)-th state a phase flip, I show that for the
correct amount of noise, a ∼ 6 dB amplification of the marked state probability amplitude occurs,
with no significant amplification in other states.
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Quantum state amplitude amplification is one of the
cornerstones of quantum information processing [1]. The
ability to selectively amplify states which hold information
that we wish to know at the expense of ones that do
not is an essential part of why quantum computers can
give computational advantages over classical computers
in spite of the limitations imposed by Born’s rule (i.e. the
probabilistic nature of quantum measurement [2]).
A particularly celebrated example of a quantum algo-

rithm which employs quantum amplitude amplification in
its operation is Grover’s quantum search algorithm [3]. In
this procedure, a quantum register is initialised in an equal
amplitude superposition of all the qubits which are to be
searched. The existence of a so-called “oracle” function is
assumed which is able to identify the state being searched
for, marking it by flipping its quantum phase relative to
the other states. Then, an inversion-about-mean proce-
dure is applied which amplifies the phase-flipped state
at the expense of other states. Repeating this procedure
∼√N times allows the marked state to be retrieved by a
final measurement with close to 100% certainty. Although
a large-scale version of the Grover algorithm has never
been implemented, a few experiments have tested the
phase flipping and inversion-about-mean procedures [4,5]
for a number of qubits ∼ 10. Aside from Grover’s algo-
rithm, applications of quantum amplitude amplification
include quantum counting and amplitude estimation [6].
Moving now to the specific case of computing with

neutral atoms, it may be seen that where a high degree of
coherent control of quantum states is available, the ability
to realise the Hamiltonian necessary to perform amplitude

(a)E-mail: mark@ils.uec.ac.jp

amplification may be lacking. Although numerous schemes
exist for performing quantum computation in optical
lattices [7] and considerable experimental progress has
been made recently [8], performing operations such as the
inversion-about-mean procedure requires delicate control
over atomic interactions in optical lattices which is still
very difficult to achieve. Along with these difficulties, the
ever present problem of noise induced decoherence makes
the realisation of sophisticated quantum amplification
based algorithms a great challenge.

The purpose of the present paper is to introduce a
surprising variation of the marked state amplitude ampli-
fication phenomenon which is realised using nothing more
than atoms in a periodic potential which is subject to
phase noise. While the system lies outside of the frame-
work of quantum computation (making use of quantum
states rather than quantum bits), the behaviour seen here
may still be applicable to certain computation scenarios.
(For example, it has been shown that the essence of the
quantum search algorithm can be displayed in systems
without qubits or entanglement [9,10]. The use of quan-
tum states rather than quantum bits merely leads to bad
resource scaling.) The Hamiltonian for the system of inter-
est here continuously couples all of the states in ques-
tion and also couples slightly to states outside the initial
superposition. My surprising observation is that for such
a system, applying phase noise of an appropriate strength
can induce a considerable amplification of a state marked
by an (adjacent) phase flip. The interesting points of this
proposal are i) the generic nature of the potential used
to achieve amplitude amplification and ii) the fact that
noise is an essential ingredient in producing the amplifi-
cation. The procedure was motivated by considering cold
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atoms exposed to a periodic potential or optical lattice. In
fact, the idea represents a mere extension, if an ambitious
one, of experimental techniques which have already been
demonstrated in the lab [11].
Consider a two-level atom exposed to a time-

independent sinusoidal potential with wave number 2k.
Rubidium or caesium atoms in a far detuned standing
optical standing wave are an excellent approximation to
such a system [12], with the potential induced by the
AC Stark shift and the spontaneous emission rate being
essentially zero on experimental times scales. The transfer
of momentum momentum is discretized according to
Bloch’s theorem [13] and momentum eigenstates have the
form of plane waves represented by states |n2�k〉. We will
assume that the particle has been prepared in an initial
state

|ψi〉 = 1√
N
(|0〉+ |2�k〉+ . . .− |(j− 1)2�k〉

+ . . .+ |(N − 1)2�k〉). (1)

States of this sort have been considered before in the
context of coherent control for kicked atoms [14]. It is in
principle possible to create such a state using successive
Bragg pulses in atom optical systems [15]. In this state,
the (j− 1)-th eigenstate has been flipped in phase. As we
will show later, this has the effect ofmarking the j-th state
for amplification. The atom thus prepared, is exposed for
a time Tp to a periodic potential (with wave number 2k)
given by

Vt(x) = �K cos(2kx+φt), (2)

where K is the potential strength proportional to the
exposure time Tp. The phase term φt changes to a
new random value on the range φt ∈ [0, 2πL] at regular
intervals T . Thus, I consider a single pulse to be made
up of N individual pulse segments of length Tp/N with
different random phases. The quantum evolution may be
calculated by considering the evolution over each pulse
segment in turn.
Here, I am interested in the external atomic dynamics

during the pulse. For a pulse length Tp short compared
with the time π/kv which the atoms with an rms speed v
take to travel one period of the potential, it is justifiable,
and convenient, to ignore the kinetic energy. To investigate
these dynamics, the quantum evolution equation across an
arbitrary pulse segment must be evaluated. In the short
pulse approximation where contributions from momentum
can be ignored (i.e. the Raman-Nath regime), it is given by

Ut = exp(−iHt/�)≈ exp(−iK cos(2kx+φt)). (3)

Therefore, the evolution operator across all of the pulse
segments is simply the product of the Ut for t= 1, . . . , N .
If we make the definitions Ξc = (1/N)

∑N
t=1 cos(φt) and

Ξs = (1/N)
∑N
t=1 sin(φt) then this total evolution operator

may be written

Ud = exp(−iK[Ξc cos(2kx)+Ξs sin(2kx)]). (4)
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Fig. 1: (Colour on-line) The evolution of the momentum prob-
ability distribution as a function of the number of phase jumps
in the pulse (shown in the upper right of each panel). The upper
leftmost pannel shows the initial probability distribution.

We can find the wave function after the pulse as a function
of the output integer momentum state |m〉 ≡ |m2�k〉 by
taking the inner product ψo(m) = 〈m|Ud|ψi〉. Figure 1
demonstrates how the probability distribution of the inte-
ger momentum m, as given by |ψo(m)|2, evolves as the
number of phase jumps in the pulse is increased. In this
case, the momentum states 0 to 7× 2�k were given equal
initial amplitudes and the m= 4 state was marked by
flipping the phase of the m= 3 state. I took L= 0.5 and
K = 2.8 (the reason for taking these values is explained
below) and evolved the initial wave function by applying
the quantum evolution iperator Ud for increasing numbers
N of random phase jumps within the pulse. It may be seen
that, as the number of phase jumps increases, the prob-
ability amplitude of the m= 5 state increases whilst all
the other initially populated states remain approximately
the same or decrease in amplitude. Certainly, no other
state recieves the large amplification of the m= 5 state.
Observing this intriguing behaviour, two questions are

immediately raised: 1) Does the same amplification behav-
iour occur for any choice of the marked state j? 2) What
are the optimal parameters to achieve amplification?
These questions are answered in figs. 2 and 3, respectively.
Firstly, in fig. 2, I plot the state of maximum ampli-

tude after application of 30 phase jumps for the same
parameters as in fig. 1 against the marked state m. As
seen in fig. 2, there is perfect correlation between the
initially marked state and the maximum amplitude state
in the output wave function. Furthermore, as shown in
the inset of fig. 2, apart from the case where the marked
state corresponds to the “edge” states |m= 0〉, |N − 1〉,
the amplification

R=
|ψo(j)|2
|ψi(j)|2 =NP (j) (5)

has the same value R≈ 4.2 for any marked state using this
procedure, with fluctuations occuring due to the specific
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Fig. 2: (Colour on-line) Demonstration of perfect correlation
between the marked state and the maximum probability state
in the final output superposition. An initial superposition of
100 momentum states was used. Crosses show the number
of the state which had maximum amplitude on the vertical
axis, plotted against the number of the marked state in the
initial superposition for a 30 phase jump pulse. We see perfect
correlation between the two. The maximum amplitude state is
always |j〉, where j− 1 is the phase flipped state momentum.
The inset shows the value of the maximum as a function of the
initial marked state quantum number.

noise realization in each simulated pulse with phase
noise.
Secondly, I consider the question of optimal parameters

to induce amplification. There are three parameters which
we can vary —the number of phase jumps N in the pulse,
the over all strength of the potential K and the strength
L of the phase noise. The variation of the amplification
R as a function of these parameters is shown in fig. 3,
where the crosses show results from quantum simulations
as above. The dashed lines show results from the theory
in the limit of a large number of phase jumps which is
developed below. As shown in the upper panel of fig. 3, the
amplification as a function of N (taking L= 0.5 and K =
2.8) saturates at N ∼ 20. As a function of the potential
strength (see fig. 3, middle panel), (taking N = 30 and
L= 0.5) we find a peak at K ∼ 2.8. Finally, measuring the
amplification as a function of noise level L (with N = 30
and K = 2.8) gives a broad peak about L= 0.5 (see the
bottom panel of fig. 3).
The simulation results presented so far demonstrate a

substantial and general amplification effect, whereby a
marked state |m= j〉 in an initial coherent ensemble can
be amplified by means of a sinusoidal potential with added
phase noise. To understand this phenomenon better, I
now develop a closed form theoretical expression for the
output wave function. The results shown in the upper
panel of fig. 3 suggest that the amplification saturates
as the number of phase jumps is increased. Therefore, it
seems reasonable to develop a theory in the limit of a large
number of phase jumps per pulse.
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Fig. 3: (Colour on-line) Finding the optimum parameters
for amplification. The upper panel shows the R parameter
plotted against the number of phase jumps N in the pulse
for simulations (crosses) and eq. (7) (dashed line). The same
symbols are used in the middle panel which shows the same
quantity as a function of the potential strength K. The bottom
panel shows the variation of the normalized maximum with the
noise level, demonstrating that L= 0.5 produces the optimum
amplification.

Following this logic, I approximate the quantities Ξc and
Ξs by the continuous mean of the cos and sin functions
over φ. Specifically, for a large number of noise events,

Ξc ≈
∫ 2πL
0
cos(φ)dφ= sinc(2L) and Ξs ≈

∫ 2πL
0
sin(φ)dφ=

(πL/2)sinc2(L), where I take the normalized definition
sinc(x) = sin(πx)/(πx). Thus the approximate quantum
evolution operator in the limit of a large number of phase
jumps is

Uc ≈ exp[−iKsinc(2L) cos(2kx)]
× exp[−iK(πL/2)sinc2(L) sin(2kx)]. (6)

I now calculate the wave function after application of the
pulse given the initial state 1. From refs. [11], the wave
function after such a pulse for a single initial momen-
tum state |m〉 is ψo(m) = 〈m|U |0〉= im(A/A)Jm(|A|),
where A=K[sinc(2L)+ i(πL/2)sinc2(L)]. Using linear-
ity, the final wave function starting from the initial
state (1) is

ψo(m) = 〈m|U |ψi〉= 1√
N
χm

[
N−1∑
l=0

ΦlχlJm−l(|A|)
]
, (7)

where χl = i
−l(A/A)−l/2 and Φl = 1− 2δl,j−1. By using

the Kronecker δ form of Φl, the wave function may be
written in a more useful form:

ψo(m) =
1√
N
χm[Sm− 2Mm−j+1], (8)

where Sm =
∑N−1
l=0 χlJm−l(|A|) and Mm−j+1 =

χjJm−j+1(|A|). The dashed lines in fig. 3 show the
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Fig. 4: (Colour on-line) Real and imaginary parts of compo-
nents of the wave function (upper two panels) and the quan-
tum probability distribution are plotted plotted for zero noise
(left column) and optimal noise (L= 0.5) (right column) for
amplification of a 16 component initial state where the |m= 8〉
state was marked by flipping the |m= 7〉 state. In both cases
the upper two panels show the sum term Sm as bars and the
marked state term −2Mm−j+1 term as a dashed line. The
marked state is inidicated by a thick dotted line in each figure.

results of using the above theory to estimate the quantity
max(P ) for the same parameters as used in the simu-
lations. There is good qualitative and fair quantitative
agreement between the theory and simulations, with any
differences being due to the limited number of phase
jumps used in the simulations. Given this agreement, it
seems reasonable to use the approximate wave function (8)
to understand the properties of the system.
Equation (8) provides some illumination of the amplifi-

cation procedure. Firstly, note that the quantity Sm is a
constant for any m and so does not explain the amplifi-
cation which must have some dependence on the marked
state j. Therefore, the termMm−j+1 contains all the infor-
mation about the amplification of a specific state. Figure 4
shows how −2Mm−j+1 varies with m. For the optimal
parameters, this quantity is maximal when m= j, leading
to amplification of the marked state (i.e., the state with
momentum one unit more than the phase flipped state).
At this point, the reader may well be suspicious about

the roll that noise plays in the amplification scheme as
explained above. The only parameter of importance for
determining the exact nature of Mm−j+1 is |A|. Although
A depends explicitly on the noise level, it can just as well
be varied by changing K, and so at first glance it may
seem that noise is superfluous to the amplification scheme.
However, the above argument for why amplification occurs
does not consider the phase between the terms Sm and
Mm−j+1, which is difficult to estimate from eq. (8).
However, the phase is vitally important in determining
whether there is constructive or destructive interference
between the two terms. It is precisely because the noise

can alter the phase between these two terms that it is
necessary for this procedure to work. I demonstrate this
fact in fig. 4 which shows the term Sm as bars for each
m and the term Mm−j+1 as a dashed line. The right-
hand column shows results for the zero noise case (L= 0)
and the right-hand column shows the results of the same
procedure but for L= 0.5. In both columns, the top row
shows the real part of the wave function, the middle row
shows the imaginary part and the bottom row shows the
quantum probability. Note that in the case of zero noise,
and for the same effective kicking strength, there is no
amplification of the marked state for zero phase noise. In
the second column of fig. 4, where L= 0.5, we see that the
noise induces the wave function to become purely real, and
that furthermore, constructive interference occurs at the
marked state due to the fact that −2Mm−j+1 is positive
for m= j but negative for surrounding states.
To be sure, the amplification effect can be achieved by

using systematic, rather than noisy variation of the pulse
phase. Sweeping the phase between 0 and π for example
achieves the same amplification. Simulations also demon-
strated that a fixed phase jump of π/3 per pulse segment
can also give amplitude amplification, although the ampli-
fication quickly decays after a few phase jumps. The point
however, is that the same degree of amplification can be
achieved using only randomly distributed phase jumps.
So long as there is some control over the mean phase and
the phase variance (e.g., through damping of vibrations
or some other method), amplification can be achieved
without systematic control of the potential phase. This
is all the more interesting in light of the fact that phase
noise is known to be a factor limiting the fidelity of the
inversion-about-mean procedure [16]
It is further interesting to note that merely implement-

ing a phase jump with the average value of the noisy phase
fluctuations (i.e. L= 0.5⇒〈φ〉= π/2) does not produce
appreciable amplification, all other parameters being
the same. This fact demonstrates that the fluctuations
themselves are important in producing the amplification
and differentiates this result from studies of amplitude
amplification using arbitrary phases [17].
From the above analysis of eq. (8), it is clear that

the phase-noise induced amplification scheme will work
for any number of initial states. The procedure works by
reducing the amplitude of states neighbouring the marked
state and constructively adding to the marked state’s
amplitude. It is instructive to compare the amplification
procedure here with the most famous quantum amplitude
amplification algorithm —Grover’s inversion-about-mean
(IAM) procedure [3]. In terms of the state amplitudes am,
the IAM procedure may be written compactly as

a′m→−am+2〈a〉, (9)

where 〈a〉= (1/N)∑m am is the mean of the initial ampli-
tudes. In a search problem amongst N items, the initial
states are intially all equally likely and hence am = 1/

√
N .

If just one state j is flipped so that aj =−1/
√
N , the mean
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Fig. 5: (Colour on-line) The probability of measuring the
marked state (which is randomly selected) is shown as a func-
tion of the number of states in the original superposition
(crosses). The probability of measuring a randomly selected
state is also shown (circles) and seen to lie largely on a line
corresponding to P = 1/N (solid line). On average, indepen-
dent of the number of states, a ∼ 6 dB amplification of the
marked state compared with a randomly selected state as can
be seen by the fact that the crosses lie on the line P ≈ 4.2/N
(dash-dotted line). The line 9/N is also plotted (blue dashed
line) to allow comparison with the limiting maximum probabil-
ity due to one iteration of the inversion-about-mean procedure.
Squares show the N dependent maximum probability for IAM
which is given by 9(N − 1)2/N3.

becomes 〈a〉= (N − 2)/(N√N). Thus after a single
iteration, the IAM procedure gives an amplification of
the probability of measuring the j state given by

RIAM =N(a
′
j)
2 = 9

(N − 1)2
N2

. (10)

Note that RIAM→ 9 and so the amplification due to to
the IAM procedure is about twice that of the best state
amplification given by the phase noise method.
In fig. 5, I show how the phase-induced amplification

and IAM methods compare for increasing initial state
population N . Because the phase-induced amplification
method relies inherently on random fluctuations, there
is more random scatter associated with the amplification
than for the perfectly deterministic IAM. Nonetheless, the
amplification clearly clusters around the value 4.2/N . The
proability of finding a random state is also shown as circles,
and clearly clusters about the expected value of 1/N .
It is not surprising that the phase-noise–induced state

amplification is not as impressive as that for IAM since
Grover’s method is actually the optimal possible search
algorithm for polynomial resource scaling [1], and thus
IAM must be the best amplification procedure available.
The more disappointing aspect of the present method is
that there is no obvious way to extend it to successive iter-
ations which would give more amplification. The suceeding

iteration would have to draw quantum amplitude from
states more distant in terms of momentum quantum
number than the currently studied method, which
depletes four nearby states to amplify the marked one. It
is by no means clear whether the Mj−m+1 term can be
adjusted so as to achieve this. Even if an iteration proce-
dure can be found, it would also be necessary to apply the
procedure to quantum bits rather than simple quantum
states in order to produce a viable (efficient) quantum
search procedure in line with the Grover algorithm.
These problems aside however, I would like to recap

the interesting aspects of the present scheme. Firstly,
it achieves a respectable level of quantum amplitude
amplification (up to half that of the inversion-about-
mean method) of a marked state using only a generic
sinusoidal potential to manipulate the quantum input
state. Secondly, and most remarkably, phase noise is a
fundamental part of the amplification procedure, rather
than a source of decoherence as it would be in most
quantum control settings. For these reasons alone, it seems
to the author that the phenomenon deserves further study.
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