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Abstract – We investigate a model of a single resonant level coupled to the edge of a quantum
wire in the Luttinger-liquid phase or to the middle of a chiral Luttinger liquid via both tunneling
and a contact interaction. Utilizing the Yuval-Anderson approach, we map this model onto a
classical 1D Coulomb gas in which all the details of both the interactions in the lead and the level-
lead interaction enter only through the corresponding Fermi-edge singularity exponent, which we
explicitly evaluate using the Bethe ansatz solution for a particular model of the lead. Thus the
population, dynamical capacitance and level entropy are universal in the sense of being equal for
models with interactions differing in magnitude and even in sign. We demonstrate this to hold
quantitatively using density matrix renormalization group calculations. Since the Coulomb gas
description is of the single-channel Kondo type, we infer that the universality we found implies that
Luttinger-liquid physics has no qualitative effect on these properties, in contrast with perturbative
results.

Copyright c© EPLA, 2009

Introduction. – Understanding the properties of
strongly correlated systems has been one of the main
fields of investigation in condensed matter physics in
recent years. An important class of such problems is
that of quantum impurities, i.e., systems with a finite
number of degrees of freedom coupled to reservoirs of
non-interacting particles, the best known examples of
which are the Kondo and Anderson models [1] and the
spin-boson model [2]. Another important type, for which
non Fermi-liquid physics is well established, is that of
one dimensional electronic systems. When no symmetry
is spontaneously broken, the low energy physics of those
systems is described by the Luttinger-liquid (LL) theory,
where the quasiparticles are bosonic modes of density
(or, in a dual description, phase) fluctuations [3]. It is
then natural to try to bring these two themes together,
by studying quantum impurities coupled to LLs: from
the quantum impurity perspective, the reservoir now
has a non-trivial physics of its own; from the LL point
of view, this gives a way to probe the intricate physics
of the electrons which are coupled to the impurity (and
not the relatively simple behavior of the weakly inter-
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acting bosons). Besides these fundamental motivations,
quantum impurities (e.g., quantum dots) and LLs (e.g.,
quantum wires), are the basic ingredients of nano-scale
circuits, so that understanding them has a profound
importance for applications. Although such models have
been studied theoretically for some time, most effort has
been concentrated at understanding transport proper-
ties [3,4]; other phenomena have usually received only
scant attention [5–11].

Model. – The simplest possible system to study these
effects is that of a single level coupled to the edge of a
LL (which can be realized by, e.g., lithographically defin-
ing a small quantum dot at the end of a quantum wire,
or by coupling a metallic grain to the edge of a metal-
lic nanowire, or an impurity atom to the end of a carbon
nanotube), or, equivalently, to the middle of a chiral LL
(e.g., a dot near the edge of a fractional quantum hall
bar) [12]. We include contact interaction between the level
and the lead. Here transport properties are not relevant;
however, many other interesting questions can be inves-
tigated. In this letter we concentrate on thermodynamic
properties: the level population, its dynamical capaci-
tance (which can be probed experimentally by capacitively
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coupling the system to a quantum point contact) and the
level contribution to the entropy and specific heat. We
demonstrate, both analytically and numerically, that these
properties show universality, and depend on the different
interactions only through a single parameter, the Fermi
edge singularity exponent of the system. Using an anal-
ogy to the single-channel Kondo problem, we show this
universality to imply that these physical quantities have
an essentially Fermi liquid like behavior, which is affected
only quantitatively, but not qualitatively, by LL physics.
The system is described by the following Hamiltonian:

H = Hlead{ψ†(x), ψ(x)}+ ε0d†d− [γlld†ψ(0)+H.c.]
+
λll

2

(
d†d− 1

2

)
[ψ†(0)ψ(0)−ψ(0)ψ†(0)], (1)

where d, ψ(x) are Fermi operators of the level and the
lead, respectively, ε0 is the bare level energy, γll is the
level-lead tunneling matrix element, and λll is the strength
of the level-lead interaction. At low energies the lead
Hamiltonian assumes the Tomonaga-Luttinger form. It
can then be written in terms of two Bose fields Θ(x) and
Φ(x) obeying the commutation relation [Θ(x),Φ(x′)] =
iπθ(x−x′) [θ(x) is the step function], and the boundary
condition Θ(0) = 0 [3]:

Hlead =
v

2π

∫ ∞
0

{
1

g
[∂xΘ(x)]

2+ g[∂xΦ(x)]
2

}
dx, (2)

where g and v are the usual LL interaction parameter
and excitation velocity, respectively. The electron density
equals ∂xΦ/π, and the electron annihilation operator at
the the edge of the lead can be expressed in the bosonic
language as ψ(0) = χeiΦ(0)/

√
2πa, using a Majorana Fermi

operators χ and a short distance cutoff (e.g., a lattice
spacing) a.

Yuval-Anderson approach and universality. –
Using the Yuval-Anderson approach [13], in either the
canonical [14] or the path-integral [15] formulations, we
expand the partition function to all orders in γll and
evaluate the resulting terms. The expression thus obtained
is a sum over all possible imaginary time histories of the
level, which fluctuates between the empty and filled states.
We then obtain the expression

Z =

∞∑
N=0
σ=±1

(
Γ0ξ0
π

)N ∫ τ2−ξ0
0

dτ1
ξ0

∫ τ3−ξ0
0

dτ2
ξ0

. . .

∫ τ2N−ξ0
0

dτ2N−1
ξ0

∫ β
0

dτ2N
ξ0
exp[−S({τi}, σ)], (3)

where ξ0 is a short time (ultraviolet) cutoff, Γ0 is the
(renormalized) level width (an expression for which is
given below), and β is the inverse temperature of the
original problem. This expression thus has the form of
a classical grand canonical partition function of a one
dimensional gas of particles (“Coulomb gas”) residing

on a circle of circumference β, with fugacity
√
Γ0ξ0/π.

Each particle is assigned a positive (negative) charge
if it corresponds to hopping of an electron from the
lead to the level (vice versa). The charges must thus be
alternating, with an overall charge neutrality. Hence, a
configuration is completely specified by the sign of the
first charge (denoted by σ in the above expression) and by
the positions of the particles. The action of this classical
system consists of two terms:

S({τi}, σ) = αFES
∑

1�i<j�2N
(−1)i+j ln

{
πξ0/β

sin[π(τj − τi)/β]
}

+ε0


β 1−σ

2
+σ

∑
1�i�2N

(−1)iτi

 . (4)

The first term is an interaction between the particles, with
the form of a Coulomb interaction between charged rods,
and a coefficient (charge squared) αFES, the Fermi edge
singularity exponent of our problem (by which we refer
to twice the scaling dimension of d†ψ(0) for λll = 0). We
discuss its value below. If the lead has a finite length L
but the temperature is zero, one should substitute L/(iv)
for β inside the logarithm, whereas at finite temperature
the sine is replaced by an elliptic function [16]. The second
term in the action of the classical system corresponds to
the energetic cost of filling the level, and resembles the
effect of an electric field applied on the charges.
We thus see that the partition function depends on the

original model only through three parameters: Γ0, ε0 and
αFES. As we show below, the latter, in particular, contains
the main effects of the interactions, both in the lead and
between the level and the lead. This implies a universality
in this system. We use this term here to refer to the fact
that many of the properties of the system depend only on
these three parameters, so that they will be the same for
very different systems, with different strengths and signs of
interactions, provided these three parameters are indeed
the same. The properties which exhibit universality are
the thermodynamic ones, e.g.: the level population and
its correlation functions (or, equivalently, the static and
dynamic level capacitance), and the level contributions to
the entropy and the specific heat.
Since the universality is based on the Yuval-Anderson

description, it is important to understand the limitations
of the latter. The derivation of the Coulomb gas represta-
tion assumes that the correlation functions of the tunnel-
ing term d†ψ(0) behave as power laws in time. While this is
correct for the Tomonaga-Luttinger Hamiltonian (2), any
particular model of a one-dimensional lead will differ from
it by terms which are irrelevant at low-energies (or, equiv-
alently, long times) in the renormalization group sense.
This will affect the correlation functions in two ways:
i) At long times they will retain the power law form,
but with renormalized power and prefactor. ii) At short
times the power law form itself could be modified. The
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first effect does not change the form of the Coulomb gas
expansion (or the resulting universality), and can be
accounted for by using the appropriate renormalized
values of the Coulomb gas parameters αFES and Γ0. These
values are discussed in the following section. The second
effect, on the other hand, could have resulted in a real
limitation of the Anderson-Yuval description. However,
numerical data presented below shows that, to a very
high degree of accuracy, this has no quantitative effect,
except in the vicinity of the transition points from the LL
phase to non-metallic phases (where perturbations to the
Tomonaga-Luttinger Hamiltonian become relevant).

Coulomb gas parameters. – Following these
comments, we now discuss in more details the parameters
appearing in the Coulomb gas form of the partition
function. In the case where the lead is noninteracting, we
have the usual resonant level model, for which it is known
that αFES = (1− 2π δ)2 and Γ0 = π|γll|2ν0 cos(δ), where
δ= tan−1(πν0λll/2) is the phase shift of the electrons
in the lead caused by their interaction with the level,
and ν0 is the local density of states at the end of the
lead [17,18]. When there are nonvanishing interactions
both in the lead and between the level and the lead, the
situation is more complicated. From bosonization [3] we
obtain (since there is no backscattering in this problem)
αFES = (1− gλll/πv)2/g, and Γ0 = π|γll|2ν0. If we go to
the limit of a noninteracting lead (with ν0 = 1/(πv) taking
into account both the left-and right-going branches), we
see that in the bosonization treatment expressions that
should contain the phase shift δ are replaced by their
leading-order dependence on λll. This is the result of
irrelevant corrections to the LL Hamiltonian (2), in this
case — the band curvature.
On the other hand, from boundary conformal field

theory arguments [19] it follows that πvαFES/L is equal
to the 1/L correction to the difference between the two
energies: the energy of a lead with no attached level but
with potentials of strengths ±λll/2 applied on its two
edges, and the energy of that lead with one electron
extracted and a potential of strength λll/2 applied on
both ends. It may thus be calculated numerically, or even
analytically when an exact solution is available. Let us
consider, for example, a discrete realization of the lead
as a half-filled tight-binding chain with nearest-neighbor
interactions:

HTBl =

∞∑
i=1

[− tc†i ci+1+H.c.+U(ni− 12 )(ni+1− 12 )], (5)

where ci is the Fermi operator at the lead’s i-th
site, ni = c

†
i ci is the corresponding number operator,

while t and U are the nearest-neighbor hopping and
interaction strengths along the chain. The LL para-
meters of this model are g= π/[2 cos−1(−∆)], and
v/(ta) = π

√
1−∆2/ cos−1∆, with ∆≡U/2t and a

denoting the lattice spacing [3]. The full Hamiltonian

Table 1: Parameters appearing in the Coulomb gas model,
eqs. (3) and (4). See the text for further details.

Non-interacting Bosonization General
lead model

αFES (1− 2
π
δ)2 1

g
(1− gλll

πv
)2 1

g
(1− g 2

π
δeff)

2

Γ0 π|γll|2 ν0 cos(δ) π|γll|2 ν0 π|γll|2 ν0 cos(δeff)

(including the level) is now

HTB = HTBl+ ε0d
†d− (tllc†1d+H.c.)

+Ull(d
†d− 12 )(c†1c1− 12 ), (6)

where the level-lead couplings are related to their contin-
uum counterparts by γll = tll

√
a, and λll =Ulla. This

model of the lead (or its equivalent, the XXZ spin
chain [3]) is exactly solvable by the Bethe ansatz even
for a finite size system and in the presence of potentials
at the boundary [20,21]. Hence, an analytic expression for
αFES can be found in this case

αFES =
1

g

[
1− 2g

π
tan−1

(
Ull√

(2t)2−U2

)]2
. (7)

It then seems natural to identify δeff = tan
−1
(

Ull√
(2t)2−U2

)
as an effective phase shift, which reduces to the
usual phase shift when the lead is noninteracting. We
may thus expect that for a general model we can

write αFES =
1
g

(
1− 2g

π
δeff
)2
, for some effective phase

shift δeff ∈ [−π/2, π/2], so that Γ0 will be given by
π|γll|2 ν0cos(δeff). In the following we will confirm
these results quantitatively by our numerical data. The
discussion in the last two paragraphs is summarized in
table 1.
We note in passing that the mapping into the Coulomb

gas can be easily extended to include the case of an Ohmic
environment coupled to the level. The only effect of this on
the analysis is modifying the parameter αFES by adding
to it the impedance of the environment divided by the
quantum resistance h/e2 [6]. Hence, all our results apply
to this case too. The universality is thus seen to have an
even broader scope of applicability.

Numerical results. – Let us now turn to a numerical
test of the universality. As we explained above, this enables
us to show that although the mapping to a Coulomb-gas
applies rigorously only to the low-frequency (long-time)
behavior, we have found that universality holds quanti-
tatively, at least when irrelevant perturbations of the LL
are not too strong. To this end we have performed density
matrix renormalization group (DMRG) [22] calculations
on the half-filled tight-binding realizations of the system,
eqs. (5) and (6). Up to 256 block states were kept in each
iteration. In fig. 1 we show the differential capacitance
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Fig. 1: (Color online) A color map of the differential capaci-
tance (divided by the noninteracting value) obtained by DMRG
at half filling, as a function of the interactions in the lead and
between the level and the lead, with contours of constant αFES
superimposed. It can be seen that the effect of all the inter-
actions comes only through this parameter, confirming univer-
sality. See the text for further details.

∂n/∂ε0 at ε0 = 0 in a color map as a function of both the
level-lead interaction and the interaction in the lead. In all
cases we have kept Γ0 = 10

−4t and L= 50v/t, modifying tll
and L accordingly, so as to keep all the parameters of the
Coulomb gas constant except αFES. On the color map we
superimposed a contour plot of αFES, taken from eq. (7).
It is indeed seen that the contours of constant αFES are
also contours of constant differential capacitance, confirm-
ing the important role of the former in determining the
behavior of the system. Deviations are seen only for quite
strong interactions, where irrelevant terms in the Hamil-
tonian are initially quite strong (and are not renormalized
to zero because of the finite system size), and thus modify
the results quantitatively. To appreciate this one should
remember that for |U |> 2t the system is no longer a LL
[but becomes charge density wave (phase separated) for
positive (negative) U ]; whereas for |Ull|> 2t the potential
of ±Ull/2 felt at the last site of the lead when the level is
full (empty) is strong enough to form a bound state. Both
of these effects are not included in our treatment.
A more detailed comparison is made in fig. 2. Here

we show the full dependence of the level population
on its energy. The population curves corresponding to
different αFES values are presented, and on each such curve
there are symbols of four types, denoting the numerical
results on four different models: a) a non-interacting
lead with nonzero level-lead interaction; b) a lead with
nearest-neighbor interactions but zero level-lead term;
c) a system with both nonzero Ull and nearest-neighbor
interaction in the lead (which serves as a test to eq. (7)
and the subsequent discussion); d) a lead with next-
nearest-neighbor interactions of strength V in addition to
the nearset-neighbor interactions (but vanishing Ull), i.e.,

1.394
1.266
1.146
1
0.915
0.815
0.699

-30 -20 -10 0 10 20 30
ε

0
/Γ0

0

0.2

0.4

0.6

0.8

1

n do
t

Non-interacting lead, U
ll
≠0

Interacting lead (nearest
neighbors), U

ll
=0

Interacting lead (nearest
neighbors), U

ll
≠0

Interacting lead (next
nearset neighbors), U

ll
=0

α
FES

Fig. 2: (Color online) Level population as a function of its
energy: different symbols denote four models used in the
DMRG calculations, while the different curves (which are a
guide to the eye) correspond to different αFES values (the
smaller αFES the wider the curve and vice versa). In the last
model the strengths of the nearest neighbor and next-nearest-
neighbor interactions are: {U/t, V/t}= {1.5, 0.5}, {1.0, 0.5},
{0.5, 0.5}, {−0.25,−0.25}, {−0.5,−0.5}, {−0.75,−0.5}, in
order of decreasing αFES. In the third model U was taken as
±0.5t, with opposite sign to the corresponding fourth model
case. See the text for further details.

with the term V
∑
i

(
c†i ci− 12

)(
c†i+2ci+2− 12

)
added to

eq. (5). This is used to show that our results apply even
to non-integrable models (in this system g was determined
numerically). The parameters of the four models were
chosen to give the same αFES value (i.e., in each case
we have chosen arbitrarily the interactions in the lead in
models c) and d), and determined by the above condition
all the other interactions. The other parameters are the
same as in fig. 1, except for the lead length, which is
twice as large here). Again we can see that the population
is universal, determined by αFES alone, and not by the
parameters of a specific model.

Lessons from the Kondo effect. – We now discuss
another implication of the Coulomb gas mapping. The
Coulomb gas we have obtained is similar to the original
one, derived by Yuval and Anderson in their treatment
of the anisotropic single-channel Kondo model [13].
In particular, the level population (minus one-half) in
our system is equivalent to the magnetization of the
Kondo impurity, the level energy ε0 is analogous to a
local magnetic field, Γ0 plays the role of J⊥, and αFES
is determined by Jz. We can thus immediately import
all the known results from the Kondo problem [1] to
the case of a LL lead coupled to a level. The system
considered can be in one of two phases: a strong-coupling
(antiferromagnetic Kondo like) delocalized phase, and a
weak-coupling (ferromagnetic Kondo like) localized phase.
At very small values of Γ0 the transition is at αFES =
2, whereas for larger Γ0 it occurs for larger values of
αFES. In the localized phase, the low-energy physics
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is that of an effectively disconnected level, so that its
population is discontinuous as a function of ε0, and there
is a nonvanishing residual entropy at zero temperature.
Similar results regarding this phase, as well as the phase
transition line, were already discussed in ref. [5], albeit
using different techniques, and tested numerically by us
[9]. On the other hand, in the delocalized phase, the
impurity is well hybridized with the conduction band, so
the level population is analytic in ε0. One can write an
explicit expression for this dependence using the Bethe
ansatz solution of the Kondo problem [1]. In particular,
for small values of ε0, one has

n(ε0)∼ 1
2
− ε0

πTK
(8)

with TK (the effective level width) corresponding to the
“Kondo temperature” of the problem, which, for small Γ0,
is given by

TK = (Γ0ξ0)
1/(2−αFES) /ξ0, (9)

and thus reduces to Γ0 for vanishing interactions
(αFES=1). Hence, in this phase the population does not
show any power law dependence on ε0. The only power
law appearing is in the formula for TK . However, the
power depends on αFES, and is nontrivial (i.e., different
from unity) even for a Fermi-liquid lead if level-lead
interactions are not negligible, or in the presence of dissi-
pation. The same conclusion applies to other quantities
in this phase: at long time (denoted by τ) the correlation
function of the level population will decay as (τTK)

−2,
and the entropy and specific heat will go as 1/(βTK)
for low enough temperatures. These results are in fact
another manifestation of the universality property of this
system: it implies that LL physics (with its ubiquitous
power law dependences) cannot be manifested through
the behavior of any of the thermodynamic properties,
contrary to what one might expect based on perturbative
calculations, like those performed (albeit for a different,
two-lead configuration) in ref. [8] for the case λll = 0.
Such calculations, while reproducing eq. (9), deviate from
eq. (8) if g is sufficiently small.
From eqs. (8) and (9) we see that the population curve

becomes wider as αFES becomes smaller and vice-versa,
in agreement with the numerical results shown in figs. 1
and 2. This has a simple interpretation: smaller αFES
corresponds, according to the previous results, to large g
(i.e., attraction in the lead) or positive λll. Indeed, when
g is larger than 1, the local density of states at the edge
of a LL (or at the middle of a chiral LL) diverges at the
Fermi energy [3], so tunneling is enhanced; similarly, for
λll > 0 tunneling is also enhanced by the Mahan exciton
effect [17]: when the level is empty (full) the adjacent site
of the lead tends to be full (empty) because of the charging
interaction, so transition between these states becomes
easier. In both cases, the population curve should indeed
become broader.

Conclusions. – To conclude, we have shown that the
thermodynamic properties of a level coupled to the edge
of a LL are universal for a wide range of models, and
are determined by only few parameters. These properties
follow a single-channel Kondo physics, and thus are not
qualitatively affected by the LL phase of the lead. This
implies that interesting phenomena occurring in quantum
impurities coupled to LLs can be studied on equivalent
models with non-interacting leads, which are much easier
to study, both analytically and numerically (using, e.g.,
Wilson’s numerical renormalization group [23]). A clear
signature of the LL phase can be seen when examining
transport-like properties (e.g., the level local density of
states). Alternatively, one could extend the model to
include more than one lead. Both topics will be discussed
elsewhere [24].
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