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Abstract – In fully developed turbulence, the velocity field possesses long-range correlations,
denoted by a scaling power spectrum or structure functions. Here we consider the autocorrelation
function of velocity increment ∆u�(t) at separation time �. Anselmet et al. (J. Fluid Mech., 140
(1984) 63) have found that the autocorrelation function of velocity increment has a minimum
value, whose location is approximately equal to �. Taking statistical stationary assumption, we
link the velocity increment and the autocorrelation function with the power spectrum of the
original variable. We then propose an analytical model of the autocorrelation function. With this
model, we prove that the location of the minimum autocorrelation function is exactly equal to the
separation time � when the scaling of the power spectrum of the original variable belongs to the
range 0<β < 2. This model also suggests a power law expression for the minimum autocorrelation.
Considering the cumulative function of the autocorrelation function, it is shown that the main
contribution to the autocorrelation function comes from the large scale part. Finally we argue
that the autocorrelation function is a better indicator of the inertial range than the second-order
structure function.

Copyright c© EPLA, 2009

Introduction. – Turbulence is characterized by power
law of the velocity spectrum [1] and structure functions in
the inertial range [2,3]. This is associated to long-range
power-law correlations for the dissipation or absolute
value of the velocity increment. Here we consider the
autocorrelation of velocity increments (without absolute
value), inspired by a remark found in Anselmet et al.
(1984) [4]. In this reference, it is found that the location
of the minimum value of the autocorrelation function Γ(τ)
of velocity increment ∆u�(t), defined as

∆u�(t) = u(t+ �)−u(t) (1)

of fully developed turbulence with time separation � is
approximately equal to �. The autocorrelation function of
this time series is defined as

Γ(τ) = 〈(V�(t)−µ)(V�(t− τ)−µ)〉, (2)

where V�(t) =∆u�(t), µ is the mean value of V�(t), and
τ > 0 is the time lag.

(a)E-mail: francois.schmitt@univ-lille1.fr

This paper mainly presents analytical results. In first
section we present the database considered here as an illus-
tration of the property which is studied. The next section
presents theoretical studies. The last section provides a
discussion.

Experimental analysis of the autocorrelation
function of velocity increments. – We consider
here a turbulence velocity time series obtained from an
experimental homogeneous and nearly isotropic turbulent
flow at downstream x/M = 20, where M is the mesh size.
The flow is characterized by the Taylor-microscale–based
Reynolds number Reλ = 720 [5]. The sampling frequency
is fs = 40 kHz and a low-pass filter at a frequency 20 kHz is
applied to the experimental data. The sampling time is
30 s, and the number of data points per channel for each
measurement is 1.2× 106. We have 120 realizations with
four channels. The total number of data points at this
location is 5.76× 108. The mean velocity is 12ms−1. The
rms velocity is 1.85 and 1.64ms−1 for streamwise (longi-
tudinal) and spanwise (transverse) velocity component.
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Fig. 1: (Colour on-line) Compensated spectrum E(f)fβ of
streamwise (longitudinal) (β � 1.63) and spanwise (transverse)
(β � 1.62) velocity, where β is the corresponding power law
estimated from the power spectrum. The plateau is observed
on the range 20< f < 2000Hz and 40< f < 4000Hz for
streamwise (longitudinal) and spanwise (transverse) velocity,
respectively.

The Kolmogorov scale η and the Taylor microscale λ
are 0.11mm and 5.84mm, respectively. Let us note here
Ts = 1/fs the time resolution of these measurements.
These data demonstrate an inertial range over two
decades [5], see a compensated spectrum E(f)fβ in fig. 1,
where β � 1.63 and β � 1.62 for streamwise (longitudinal)
and spanwise (transverse) velocity, respectively. We show
the autocorrelation function Γ�(τ) directly estimated
from these data in fig. 2. Graphically, the location τ0 of
the minimum value of each curve is very close to �, which
confirms Anselmet’s observation [4]. Let us define

Γ0(�) =min
τ
{Γ�(τ)} (3)

and τ0 the location of the minimum value

Γ0(�) = Γ�(τ0(�)). (4)

We show the estimated τ0(�) on the range 2< �/Ts <
40000 in fig. 3, where the inertial range is indicated by
IR. It shows that when � is greater than 20Ts, τ0 is very
close to � even when � is in the forcing range, in agreement
with the remark of Anselmet et al. [4]. In the following,
we show this analytically.

Autocorrelation function. – Considering the statis-
tical stationary assumption [3], we represent u(t) in
Fourier space, which is written as

Û(f) =F(u(t)) =
∫ +∞
−∞

u(t)e−2πift dt, (5)

where F means Fourier transform and f is the frequency.
Thus, the Fourier transform of the velocity increment
∆u�(t) is written as

S�(f) =F(δu�(t)) = Û(f)(e2πif�− 1), (6)
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Fig. 2: (Colour on-line) Autocorrelation function Γ�(τ) of the
velocity increment ∆u�(t) estimated from an experimental
homogeneous and nearly isotropy turbulence time series with
various increments �. The location of the minimum value is very
close to the separation time �. The inset shows the rescaled
autocorrelation function Υ(ς).
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Fig. 3: (Colour on-line) Location τ0(�) of the minimum value
of the autocorrelation function estimated from experimental
data, where the inertial range is marked as IR. The solid line
indicates τ0(�) = �.

where ∆u�(t) = u(t+ �)−u(t). Hence, the 1D power spec-
tral density function of velocity increments E∆(f) is
expressed as

E∆(f) = |S�(f)|2 =Ev(f)(1− cos(2πf�)), (7)

where Ev(f) = 2|Û(f)|2 is the velocity power spectrum [3].
It is clear that the velocity increment operator acts a kind
of filter, where the frequencies f∆ = n/�, n= 0, 1, 2, · · ·, are
filtered.
Let us consider now the autocorrelation function of

the increment. The Wiener-Khinchin theorem relates the
autocorrelation function to the power spectral density via
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the Fourier transform [3,6]

Γ�(τ) =

∫ +∞
0

E∆(f) cos(2πfτ) df. (8)

The theorem can be applied to wide-sense-stationary
random processes, signals whose Fourier transforms may
not exist, using the definition of autocorrelation function
in terms of expected value rather than an infinite inte-
gral [6]. Substituting eq. (7) into the above equation, and
assuming a power law for the spectrum (a hypothesis of
similarity)

Ev(f) = cf
−β , c > 0, (9)

we obtain

Γ�(τ) = c

∫ +∞
0

f−β(1− cos(2πf�)) cos(2πfτ) df. (10)

The convergence condition requires 0<β < 3. It implies a
rescaled relation, using scaling transformation inside the
integral. This can be estimated by taking �′ = λ�, f ′ = fλ,
τ ′ = τ/λ for λ> 0, providing the identity

Γλ�(τ) = Γ�(τ/λ)λ
β−1. (11)

If we take �= 1 and replace λ with �, we then have

Γ�(τ) = Γ1(τ/�)�
β−1. (12)

Thus, we have a universal autocorrelation function

Γ�(�ς)�
1−β =Υ(ς) = Γ1(ς). (13)

This rescaled universal autocorrelation function is shown
as inset in fig. 2. A derivative of eq. (11) gives Γ′λ�(τ) =
Γ′�(τ/λ)λ

β−2. The minimum value of the left-hand side
is τ = τ0(λ�), verifying Γ

′
λ�(τ0(λ�)) = 0 and for this value

we have also Γ′�(τ0(λ�)/λ) = 0. This shows that τ0(�) =
τ0(λ�)/λ. Taking again �= 1 and λ= �, we have

τ0(�) = �τ0(1) (14)

Showing that τ0(�) is proportional to � in the scaling
range (when � belongs to the inertial range). With the
definition of Γ0(�) = Γ�(τ0(�)) we have, also using eq. (11),
for τ = τ0(λ�):

Γλ�(τ0(λ�)) = Γ�(τ0(λ�)/λ)λ
β−1

= Γ�(τ0(�))λ
β−1. (15)

Hence Γ0(λ�) = λ
β−1Γ0(�) or

Γ0(�) = Γ0(1)�
β−1 (16)

We now consider the location τ0(1) of the autocorre-
lation function for �= 1. We take the first derivative of
eq. (10), written for �= 1

P(τ) = dΓ1(τ)
dτ

=−
∫ +∞
0

f1−β(1− cos(2πf)) sin(2πfτ) df,
(17)
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Fig. 4: (Colour on-line) Numerical solution of the rescaled
autocorrelation function Υ(ς) with various β from 0.5 to 2.5
estimated from eq. (10).

where we left out the constant in the integral. The same
rescaling calculation leads to the following expression:

P(τ) = [(1+1/τ)β−2+(1− 1/τ)β−2− 2]M/2, τ �= 1,
P(τ) = (2β−3− 1)M, τ = 1, (18)

where M =
∫ +∞
0
x1−β(1− cos(2πx))sin(2πxτ) dx and

M > 0 [7]. The convergence condition requires 1<β < 4.
When β < 2, one can find that both left and right limits
of P(1) are infinite, but the definition of P(1) in eq. (17)
is finite. Thus τ = 1 is a second type discontinuity point
of eq. (17) [8]. It is easy to show that{P(τ)< 0, τ � 1,

P(τ)> 0, τ > 1.
(19)

It means that P(τ) changes its sign from negative to
positive when τ is increasing from τ < 1 to τ > 1. In other
words the autocorrelation function will take its minimum
value at the location where τ is exactly equal to 1. We
thus see that τ0(1) = 1 and hence τ0(�) = � (eq. (14)).

Numerical validation. – There is no analytical
solution for eq. (10). It is then solved here by a
proper numerical algorithm. We perform a fourth-order
accurate Simpson rule numerical integration of eq. (10)
on range 10−4 < f < 104 with �= 1 for various β with step
∆f = 10−6. We show the rescaled numerical solutions
Υ(ς) for various β values in fig. 4. Graphically, as what
we have proved above, the location τ0(1) of the minimum
autocorrelation function is exactly equal to 1 when
0<β < 2.
For the fBm, the autocorrelation function of the incre-

ments is known to be the following [9]:

Γ�(τ) =
1

2

{
(τ + �)2H + |τ − �|2H − τ2H} (20)

where τ � 0. We compare the autocorrelation (coefficient)
function estimated from fBm simulation (�, see below)
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Fig. 5: (Colour on-line) Comparison of the autocorrelation
function, which is predicted by eq. (20) (solid line) and
estimated from fBm simulation (�) with �= 200 points.

with eq. (20) (solid line) in fig. 5, where �= 200 points.
Graphically, eq. (20) provides a very good agreement
with numerical simulation. Based on this model, it is not
difficult to find that Γ0(�)∼ �2H when 0<H < 1, corre-
sponding to 1<β < 3, and τ0(�) = � when 0<H < 0.5,
corresponding to 1<β < 2. One can find that the vali-
dation range of the scaling exponent β is only a subset of
Wiener-Khinchin theorem.
We then check the power law for the minimum value of

the autocorrelation function given in eq. (12). We simulate
100 segments of fractional Brownian motion with length
106 data points each, by performing a wavelet-based
algorithm [10]. We take db2 wavelet with H = 1/3
(corresponding to the Hurst number of turbulent
velocity). We plot the estimated minima value Γ0(�)
(+) of the autocorrelation function in fig. 6. A power
law behaviour is observed with the scaling exponent
β− 1 = 2/3 as expected. It confirms eq. (12) for fBm. We
also plot Γ0(�) estimated from turbulent experimental
data for both streamwise (longitudinal) (�) and spanwise
(transverse) (©) velocity components in fig. 6, where the
inertial range is marked by IR. Power law is observed on
the corresponding inertial range with scaling exponent
β− 1 = 0.78± 0.04. This scaling exponent is larger than
2/3, which may be an effect of intermittency. The exact
relation between this scaling exponent with intermittent
parameter should be investigated further in future work.
The power law range is almost the same as the inertial
range estimated by Fourier power spectrum. It indicates
that the autocorrelation function can be used to deter-
mine the inertial range. Indeed, as we show later, it seems
to be a better inertial range indicator than structure
functions.

Discussion. – We define a cumulative function

Q(f, �, τ) =
∫ f
0
K(f ′, �, τ) df ′∫ +∞

0
K(f ′, �, τ) df ′

, (21)
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Fig. 6: (Colour on-line) Representation of the minima
value Γ0(�) of the autocorrelation function estimated from
synthesized fBm time series with H = 1/3 (+), and the exper-
imental data for streamwise (longitudinal) (�) and spanwise
(transverse) (©) turbulent velocity components, where the
corresponding inertial range is denoted as IR. Power law behav-
iour is observed with scaling exponent β− 1 = 2/3 and β− 1 =
0.78± 0.04 for fBm and turbulent velocity, respectively.
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Fig. 7: (Colour on-line) Cumulative function Q(f, �, τ)
estimated from turbulent experimental data for spanwise
(transverse) velocity with τ = � in the inertial range, where
the numerical solution is shown as inset with �= 1. The
inertial range is denoted as IR. Vertical solid lines demonstrate
the corresponding scale in spectral space.

where

K(f, �, τ) =Ev(f)(1− cos(2πf�)) cos(2πfτ) (22)

is the integration kernel of eq. (8). It measures the
contribution of the frequency from 0 to f at given scale
� and time delay τ . We are particularly concerned by the
case τ = �. To avoid the effects of the measurement noise,
see fig. 1, we only consider here the spanwise (transverse)
velocity. We show the estimated Q in fig. 7 for two scales
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Fig. 8: (Colour on-line) Cumulative function Q1(f) estimated
from turbulent experimental data for both streamwise (longi-
tudinal) and spanwise (transverse) velocity with various �. The
numerical solution is Q1 � 0.5.

�/Ts = 20 (©) and �/Ts = 100 (�) in the inertial range,
where the vertical solid line illustrates the location of
the corresponding time scale in spectral space. In these
experimental curves, the kernel K given in eq. (22) is
computed using the experimental spectrum Ev(f). The
corresponding inertial range is denoted by IR. We also
show the numerical solution of eq. (21) with �= 1 as
inset, which is estimated by taking a pure power law
Ev(f) = f

−β in eq. (22). We notice that both curves cross
the line Q= 0. We denote f0 such as Q(f0) = 0. It has an
advantage that the contribution from large scale � > 1/f0
is canceled by itself. Graphically, in the inertial range,
the distance between f0 and the corresponding scale �
is less than 0.3 decade. The numerical solution indicates
that this distance is about 0.3 decade. We then separate
the contribution into a large scale part and a small scale
part. We denote the contribution from the large scale part
as Q1(f) =Q(1/�, �, �). The experimental result is shown
in fig. 8 for both streamwise (longitudinal) and spanwise
(transverse) velocity components. The mean contribution
from large scale is found graphically to be 0.64. It is
significantly larger than 0.5, the value indicated by the
numerical solution. It means that the autocorrelation
function is influenced more by the large scale than by the
small scale.
We now consider the inertial range provided by different

methods. We replot the corresponding compensated spec-
tra estimated directly by Fourier power spectrum (solid
line), the second-order structure function (�), the auto-
correlation function (©) and the Hilbert spectral analysis
(�) [11] in fig. 9 for streamwise (longitudinal) velocity. For
comparison convenience, both the structure function and
the autocorrelation function are converted from physical
space into spectral space by taking f = 1/�. For display
convenience, these curves are vertically shifted. Graph-
ically, except for the structure function, the other lines
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Fig. 9: (Colour on-line) Comparison of the inertial range for the
streamwise (longitudinal) velocity. They are estimated directly
by the Fourier power spectrum, the second-order structure
function, the Hilbert spectral analysis and the autocorrelation
function.

demonstrate a clear plateau. As we have pointed above,
the autocorrelation function is a better indicator of the
inertial range than structure functions. We also notice that
the inertial range provided by the Hilbert methodology
is slightly different from the Fourier spectrum. This may
come from the fact that the former methodology has a very
local ability both in physical and spectral domain [11,12],
thus the large scale effect should be constrained. However,
the Fourier analysis requires the stationary of the data,
which is obviously not satisfied by the turbulence data.
The result we present here can also be linked with inter-
mittency properties of turbulence: we will present this in
future work.

Conclusion. – In this work, we considered the auto-
correlation function of the velocity increment ∆u�(t) time
series, where � is a time scale. Taking statistical stationary
assumption, we proposed an analytical model of the auto-
correlation function. With this model, we proved analyt-
ically that the location of the minimum autocorrelation
function is exactly equal to the separation time scale �
when the scaling of the power spectrum of the original
variable belongs to the range 0<β < 2. In fact, this prop-
erty was found experimentally to be valid outside the
scaling range, but our demonstration here concerns only
the scaling range. This model also suggests a power law
expression for the minimum autocorrelation Γ0(�). Consid-
ering the cumulative integration of the autocorrelation
function, it was shown that the autocorrelation function is
influenced more by the large scale part. Finally we argue
that the autocorrelation function is a better indicator of
the inertial range than the second-order structure func-
tion. These results have been illustrated using fully devel-
oped turbulence data; however, they are of more general
validity since we only assumed that the considered time
series is stationary and possesses scaling statistics.
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