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Abstract – This work deals with a new family of models, which includes the sine-Gordon
model and the double-sine-Gordon, triple-sine-Gordon and so on. The investigation is based on
a deformation procedure, which is used to deform a well-known model, to get to the family
of sine-Gordon models. Due to properties of the procedure, we get to the models and find the
corresponding solutions explicitly, together with all the important features they engender.
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The sine-Gordon model is described by a relativistic real
scalar field in (1, 1) spacetime dimensions, and is of great
interest in a diversity of contexts. It is a paradigm for
integrable models, and it has been studied in a diversity
of scenarios, as one can see in [1] and in more recent
years in the works [2,3]. The double- and triple-sine-
Gordon models are also of interest, but they are harder to
solve [4,5].
The solutions that we search for are static classical

configurations which solve equations of motion of rela-
tivistic models described by a single real scalar field φ
in (1, 1) spacetime dimensions. Here we deal mainly with
the presence of solutions of the topological type, which
solve first-order differential equations. Such solutions are
Bogomol’nyi-Prasad-Sommerfield (BPS) states [6], and in
general they are stable under small fluctuations [7]. They
are minima energy configurations, and may play an impor-
tant role in applications in several distinct areas such as
high-energy physics [8,9] and condensed matter, where
they can be used in several different contexts, in particular
to describe pattern formation in Nature [10].
In this work we study a family of models which includes

the sine-Gordon model as the first in a sequence of
sine-Gordon–like models. The set of models represents
a new family, which appears very naturally within the
context of the deformation procedure set forward in [11].
Applications of current interest in high-energy physics
concerns the use of such models within the Randall-
Sundrum braneworld context [12]; see also [13,14] and
references therein, which explore how the scalar field
may contribute to smooth the brane profile in the five-
dimensional scenario with a single extra dimension of
infinite extent.

The investigation starts with models described by the
Lagrange density [11]

L= 1
2
∂µχ∂

µχ−V (χ), (1)

where V (χ) is the potential which specifies the model
under consideration, and χ is a real scalar field . We focus
mainly on the general properties of the models and their
corresponding solutions; a more detailed work including
applications is under preparation. For the model (1), the
equation of motion for a generic static field χ= χ(x)
is given by d2χ/dx2 =dV/dχ. To search for topological
solutions, we write the potential in the form

V (χ) =
1

2
W 2χ , (2)

where W =W (χ) is a smooth function of the field, with
Wχ =dW/dχ. In this case the equation of motion becomes

d2χ

dx2
=WχWχχ. (3)

This equation is solved with solutions of the first-order
equation

dχ

dx
=Wχ. (4)

Since the potential does not see the sign of W , there is
another equation associated to the above equation (4),
obtained by changing W to −W .
A topological solution which solves the first-order equa-

tion has energy minimized to the value E = |∆W |=
|W (χ(∞))−W (χ(−∞))|. This is known as the Bogo-
mol’nyi bound [6], and it shows that we can get the energy
of the solutions without knowing the solutions explicitly.
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Before introducing the family of models, let us focus
attention on the deformation procedure set forward in [11],
and further used in [15] in different contexts. For instance,
in the first work in [15] one used the deformation procedure
to get to the double-sine-Gordon model, and there we
highlighted an important advantage of the deformation
procedure, which relies on finding the topological solutions
analytically. To use the deformation procedure, we firstly
introduce the standard model

V (χ) =
1

2
(1−χ2)2 (5)

which is the χ4 model with spontaneous symmetry break-
ing. V (χ) is the potential of the starting model. Here we
are using natural units, and we have rescaled the field,
and the space and time coordinates to make them dimen-
sionless. This model has as topological defects the BPS
states χ±(x) =±tanh(x), where we are taking the center
of the solutions at the origin, for simplicity. The energy
density is given by ε(x) = sech4(x), which gives the energy
E = 4/3. We also note that the potential has minima at
χ̄± =±1 which obeys V (χ̄±) = 0, and V ′(χ̄±) = 0, where
V ′(χ) = dV/dχ.
According to the deformation procedure, we can

consider another model described by U(φ), which is
written in terms of the starting model V (χ) as [11]

U(φ) =
V (χ→ f(φ))
f ′2(φ)

, (6)

where f(φ) is the deformation function, and φ is the new
field. U(φ) is the potential of the deformed model. In this
case, if χ(x) is a static solution of the starting model, then
we get that φ(x) = f−1(χ(x)) is a solution of the new,
deformed model. If we use this procedure to the model (5)
we have

U(φ) =
1

2

(1− f2(φ))2
f ′2(φ)

. (7)

We note that the model (5) has an interesting property,
which can be proven easily: if f(φ) is the function to
be used to deform the model, then 1/f(φ) is another
deformation function, which gives the very same deformed
model. We can then say that for the model (5), both

f(φ) and
1

f(φ)
(8)

form a pair of deformations which lead to the very same
model. This property will be used below to introduce the
new family of sine-Gordon models.
Let us now choose the model (5) and the deformation

function in the form f(φ) = tan(φ). This leads to the
model defined by

W (φ) =
1

2
sin(2φ), V (φ) =

1

2
cos2(2φ). (9)

In this case the deformation function depends only on φ,
and the corresponding deformed model describes the sine-
Gordon model, with no extra parameter involved in the
procedure. Here we can label the minima and maxima of
the potential according to

φnmin =±
n

4
π, for n= 1, 3, 5, . . . , (10a)

φnmax =±
n

4
π, for n= 0, 2, 4, . . . . (10b)

This model has solutions which can be obtained from
the inverse of f(φ) = tan(φ) and 1/f(φ) = cot(φ); they are
described by, respectively

φ1m(x) =± arctan(tanh(x))±mπ, (11a)

φ2m(x) =±arccot(tanh(x))±mπ. (11b)

Here m= 0, 1, 2, . . . identifies the particular sector of the
sine-Gordon model, which has an infinity of topological
sectors. We then see that we go from the χ4 model,
which contains a single sector, to the sine-Gordon model,
which contains an infinity of sectors, with the use of the
deformations f(φ) = tan(φ) and 1/f(φ) = cot(φ), which
are periodic functions.
In the sine-Gordon model, the energy density of the BPS

states can be written in the form

ε(x) = sech2(2x) (12)

and so all the topological sectors have the same energy,
E = 1. It is interesting to note that although the starting
model has a single topological sector, with kink and
antikink solutions ±tanh(x), the deformed model has
an infinity of topological sectors, and we get to the
corresponding solutions with tan(φ) and cot(φ), with the
integer m (which naturally appears from the deformation
function) mapping each one of the many individual sectors
of the model.
To show how to generate the new family of sine-

Gordon models, let us consider another deformation func-
tion, fr(φ) = rtan(φ), with r real and positive, r ∈ (0,∞).
Together we also have 1/fr(φ) = (1/r)cot(φ). Here we get
to the double-sine-Gordon model, with

W (φ) =
1

2

(
1

r
− r
)
φ+
1

4

(
1

r
+ r

)
sin(2φ) (13)

and

V (φ) =
1

2r2
(
(1+ r2) cos2(φ)− r2)2 . (14)

This model depends on the parameter r, which engenders
the interesting feature of controlling the two distinct
sectors of the model. We note that the limit r→ 1 leads
us back to the former sine-Gordon model, and r and 1/r
exchange the two distinct sectors of the model.
In the double-sine-Gordon model, the minima of the

potential are given by

φmmin =± arctan(1/r)±mπ, m= 0, 1, 2, . . . (15)
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Fig. 1: Plot of the potential of the double-sine-Gordon
model for r= 2, and for φ in the interval [−arctan(1/r), π−
arctan(1/r)]. The illustration shows how the functions act to
map the topological sector of the starting model into the two
distinct family of topological sectors of the deformed model.

and the maxima are

φmmax =±
m

2
π, m= 0, 1, 2, . . . . (16)

We note that the minima depends on r, but this is not
the case for the maxima, which have fixed positions. By
the way, we see that the position of the higher and lower
maxima exchange place when r changes to 1/r. This can
be seen from the height of the maxima, which are given by

h1(r) =
1

2r2
, h2(r) =

r2

2
. (17)

They exchange place when one changes r→ 1/r. The
double-sine-Gordon model has two families of distinct
topological sectors, which we label with a and b, so the
topological solutions of the potential described by (14) has
to be characterized by two distinct solutions, φa(x) and
φb(x). They are obtained by the two deformation functions
f(φ) and 1/f(φ). For instance, with f(φ) = rtan(φ) we
obtain

φ1(x) =± arctan
(
1

r
tanh(x)

)
±mπ (18)

with m= 0, 1, 2, . . . identifying one of the two distinct
sectors of the model. To obtain the other solutions,
describing the other family of sectors of the model, we use
the function 1/fr(φ) = (1/r)cot(φ). It leads to the same
potential, but it maps the solutions of the starting χ4

model into other defects, which are given explicitly by

φ2(x) =±arccot (r tanh(x))±mπ. (19)

In fig. 1 we plot the potentials of the χ4 and the
double-sine-Gordon models. We use r= 2, and take φ in
the interval [−arctan(1/r), π− arctan(1/r)], which shows

the sectors corresponding to the two solutions given by
eqs. (18) and (19), in the case m= 0. In this fig. 1 we
also illustrate how the deformation functions fr(φ) and
1/fr(φ) map the two family of topological sectors of the
model.
The energy densities of the deformed solutions are

given by

ε1(x) =
r2sech4(x)

(r2+tanh2(x))2
, (20)

ε2(x) =
r2sech4(x)(

1+ r2 tanh2(x)
)2 , (21)

and the total energy of the BPS states can be calculated
straightforwardly. We note that in the limit r→ 1 one
gets ε1(x) = ε2(x), which then exactly reproduces the
result (12) of the sine-Gordon model.
We go on introducing another deformation function,

given by

frs = tan{s arctan[r tan(φ)]}, (22)

where r is real and positive, r ∈ (0, 1) or r ∈ (1,∞), with
r �= 1, and s is positive integer, s= 1, 2, 3, . . .. With the
property (8) we can introduce three other deformations

1/frs = cot{s arctan[r tan(φ)]} (23)

and

grs = tan{s arctan[(1/r) cot(φ)]} (24)

and

1/grs = cot{s arctan[(1/r) cot(φ)]}. (25)

These deformations lead us to the same potential

V (φ) =
1

2r2s2
{2 cos2[s arctan(r tan(φ))]− 1}2

×[(1− r2) cos2(φ)+ r2]2. (26)

Now we have four functions, but the parameter s is very
interesting and can be used to lead to new family of
models. We see that for s= 1 we get to the double-sine-
Gordon model, which contains two (s+1, with s= 1)
distinct topological sectors, labeled by 1 and 2. As we are
going to show, for s= 2 we get to the triple-sine-Gordon
model, which contains three (s+1, with s= 2) distinct
topological sectors, labeled by 1, 2, and 3. For s= 3 we
get to the quadruple-sine-Gordon model and so on. The
other parameter, r, plays the same role as before, and it
controls the position of the minima and the height of the
maxima.
The minima of the general model are given by

φn,mmin =± arctan
(
1

r
tan
(
(2n− 1) π

4s

))
±mπ (27)

with n integer, 1� n� s, and m= 0, 1, 2, . . . .
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To classify the height of the maxima, we proceed as
follows: for 0� φ� π/2 we have l= s+1 maxima, with
the corresponding height increasing for r ∈ (1,∞), and
decreasing for r ∈ (0, 1). The first is at φ1max = 0 and the
last one at φs+1max = π/2, with the heights

h1 =
1

2r2s2
, hs+1 =

r2

2s2
, (28)

respectively. The other s− 1 maxima are all in between
the above two maxima; they are located at

φlmax =
1

2

(
φl,0min−φl−1,0min

)
(29)

for l= 2, 3, . . . , s. The height of these maxima can be
calculated for each specific value of s, with the use of (29)
and the potential (26).
The topological solutions are given by, for a given

integer s

φ1,mk,s = arctan

(
1

r
tan (Fk,s)

)
±mπ, (30a)

φ2,mk,s = arctan (r tan (Fk,s))±
(
m+

1

2

)
π, (30b)

φ3,mk,s = arctan

(
1

r
tan (Gk,s)

)
±mπ, (30c)

φ4,mk,s = arctan (r tan (Gk,s))±
(
m+

1

2

)
π, (30d)

wherem= 0, 1, 2, . . . , k= 0, 1, . . . , (k is restricted by s; see
below) and

Fk,s =
1

s
arctanχ(x)+ k

π

s
, (31a)

Gk,s =
1

s
arctanχ(x)+

(
k+
1

2

)
π

s
, (31b)

with χ(x) =±tanh(x) giving rise to the defect and anti-
defect solutions. In this case, we cannot express the energy
density analytically for s arbitrary, but this can be done
for every integer s.
To see how the family of models behaves, let us note

that the periodicity of the potential is π, and for m= 0 all
the above solutions are inside the interval

− arctan
(
1

r
tan
( π
4s

))
� φ� π− arctan

(
1

r
tan
( π
4s

))
.

In the general case, for s= 1, 2, . . . , we have that the above
interval of periodicity of the model is divided into 2s parts.
For s= 1 and r= 1 we get to the sine-Gordon model, and
for s= 1 and r arbitrary, we get to the double-sine-Gordon
model, as we have already seen explicitly. For s > 1 the
solutions are given by: for s= 2, 4, . . . , even, we have

φ1,0k,s, φ
2,0
k,s, φ

3,0
k,s, φ

4,0
k,s, for k= 0, 1, . . . ,

s− 2
2

(32)

Fig. 2: Plot of the potential of the triple-sine-Gordon model
for r= 2 and for φ in the interval [−arctan((1/r)tan(π/8)),
π− arctan((1/r)tan(π/8))]. The illustration also shows how the
functions act to map the topological sector of the starting
model into the three distinct family of topological sectors of
the deformed model.

and for s= 3, 5, . . . , odd, we get

φ1,0k,s, φ
2,0
k,s, φ

3,0
k,s, φ

4,0
k,s, for k= 0, 1, . . . ,

s− 3
2
, (33a)

φ1,0k,s, φ
4,0
k,s, for k=

s− 1
2
. (33b)

The above equations (30), (31), (32), and (33) give all
the solutions of each member of the family of sine-Gordon
models.
We illustrate the case s= 2 in fig. 2, where we show how

the deformation functions act to map the three families of
solutions of the triple-sine-Gordon model. Here we have

W (φ) = αφ+β sin(2φ)+ γ arctan[r tan(φ)], (34)

where

α=
(1+ r2)(1− 10r2+ r4)

2(1− r2)2 , (35a)

β =
1+6r2+ r4

4(1− r2) ; γ =
8r3

(1− r2)2 . (35b)

The height of the first and third maxima are given accord-
ing to (28), and the height of the second, intermediate
maximum has the form

h2 =
4r2[
√
1+6r2+ r4−√2(1+ r2)]2

(1− r2)4 . (36)

The energy densities of the three solutions corresponding
to the three distinct topological sectors are given by,
respectively,

ε1(x) =
r2sech2(2x)

4[(1− r2) cos2 θ(x)− 1]2 , (37a)
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Fig. 3: Plot of the potential of the quadruple-sine-
Gordon model for r= 2 and for φ in the interval
[−arctan((1/r)tan(π/12)), π− arctan((1/r)tan(π/12))]. The
illustration shows how the functions act to map the topologi-
cal sector of the starting model into the four distinct family of
topological sectors of the deformed model.

ε2(x) =
r2sech2(2x)

4[(1− r2) cos2(θ(x)+π/4)− 1]2 , (37b)

ε3(x) =
r2sech2(2x)

4[(1− r2) cos2 θ(x)+ r2]2 , (37c)

where θ(x) = arctan[tanh(x)]. Here we are using 1, 2, and
3 to label each one of the three distinct topological
sectors of the triple-sine-Gordon model. The total energy
corresponding to each one of the topological sectors can
be calculated straightforwardly.
We further illustrate the procedure with the quadruple-

sine-Gordon model. In this case, we use s= 3 and in fig. 3
we show the potential and illustrate how the solutions are
mapped as they appear from (33) after taking s= 3, with
the four distinct topological sectors. The procedure works
nicely, and all the other cases (with s= 4, 5, . . .) follow
naturally. In particular, if we introduce another parameter
(multiplying the functions (22) and (24)) we can then
exchange the position and height of the maxima, making
the models more general. This and other related issues will
be explored elsewhere.
In summary, we have used the deformation procedure

introduced in [11] to build a new family of models of the
sine-Gordon type. The models start with the sine-Gordon
model itself, and include the double-sine-Gordon model,
and the triple, quadruple and so on. They are controlled
by the two real parameters, r and s: r adjusts the position
and height of the maxima, and s identifies each one of the
members of the proposed family, controlling the number
of distinct topological sectors of the model. The procedure
allows to build the models and their explicit solutions,
leading to new models and exposing all the important
features of the topological solutions.
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