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Abstract – We consider a current-biased dc SQUID in the presence of an applied time-dependent
bias current or magnetic flux. The phase dynamics of such a Josephson device is equivalent to that
of a quantum particle trapped in a 1D anharmonic potential, subject to external time-dependent
control fields, i.e. a driven multilevel quantum system. The problem of finding the required time-
dependent control field that will steer the system from a given initial state to a desired final
state at a specified final time is formulated in the framework of optimal-control theory. Using
the spectral filter technique, we show that the selected optimal field which induces a coherent
population transfer between quantum states is represented by a carrier signal having a constant
frequency but which is time-varied both in amplitude and phase. The sensitivity of the optimal
solution to parameter perturbations is also addressed.

Copyright c© EPLA, 2009

Introduction. – Superconducting circuits with
Josephson junctions have received a lot of attention
recently as promising candidates for scalable quantum
bits [1,2]. An example of such a circuit is the so-called
phase qubit [3–5], which is based on a current-biased
Josephson junction. The phase dynamics of this Josephson
device is analogous to that of a quantum particle trapped
in a 1D anharmonic potential. Preparation and control
of the quantum states of the anharmonic well can be
achieved by applying time-dependent current pulses to the
system. The device can be used as a qubit when operated
in the lowest two eigenstates of the anharmonic well.
The energy levels beyond the lowest two can be

addressed as well. In particular, Rabi-like oscillations
in the multilevel limit have been observed with a
current-biased dc SQUID [6]. In the context of quantum
information processing, the coupling between the compu-
tational basis and the states of the noncomputational
subspace results in adverse effects on quantum gate
operations [7]. However, there is no need to restrict to
only two energy levels. A generalization to qudits (i.e.
systems with a single-particle Hilbert space of dimension
d> 2) has been proposed for quantum computation [8].
In this case, the quantum information is encoded in
higher-dimensional Hilbert spaces.
Quantum computation requires a precise and complete

control of quantum systems. The purpose of the present

work is to apply optimal-control theory to accurately
transfer the populations of qudit states present in a
current-biased dc SQUID. The theory of optimal control
is a well-developed field and finds numerous applications
to the optimisation of nonlinear and highly complex
dynamic systems [9]. In the quantum chemistry context,
optimal control was originally proposed by Rabitz and
co-workers [10] as a control scheme of reaction channels
and was extensively used in various control experi-
ments. Optimal-control theory provides a systematic and
flexible formalism that can be used in quantum compu-
tation to generate reliable and high precision quantum
dynamics [11]. Very recent applications deal with the
optimization of a NOT-gate for superconducting qubits
with imperfections [12,13].
In the qudit case, population transfer can be realised via

coherent transitions between quantum states interacting
with the external control. In this letter we will use
optimal-control theory to demonstrate the possibility of a
population transfer from the ground state to an arbitrary
excited state of a quantum N -level system. In general,
correlation and interference between the various pathways
involved in the population transfer process cannot be
ignored and lead to a possibly complicated dependence of
the optimal-control field on time which may be difficult
to implement experimentally. We therefore restrict the
frequency content of the control field using the spectral
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Fig. 1: (Colour on-line) (a) Current-biased dc SQUID.
(b) Phase-dependent anharmonic potential with quantized
levels.

filter technique [14,15]. This enables us to find optimized
control fields that may be experimentally feasible.

Model. – We consider a dc SQUID, biased with a
current Ib, consisting of two Josephson tunnel junctions
embedded in a superconducting loop, threaded by a flux
Φb, see fig. 1(a). Each Josephson junction is character-
ized by its critical current I0 and capacitance C0. Using
the mechanical analogy, it can be shown that the dynam-
ics of the SQUID’s phase ϕ is isomorphic to that of a
fictitious particle of mass m= 2C0(Φ0/2π)

2 moving in
one-dimensional anharmonic potential (harmonic oscil-
lator with weak cubic perturbation) [6], see fig. 1(b).
Here Φ0 = h/2e denotes the flux quantum. Key parame-
ters for the potential are the frequency of the bottom
of the well ωp and the barrier height ∆U . In the pres-
ence of a time-dependent external magnetic flux Φb(t), the
quantum dynamics is described by the total Hamiltonian
Ĥtot = Ĥϕ+ Ĥc where

Ĥϕ =
1

2
�ωp(P̂

2+ X̂2)−σ�ωpX̂3, Hc = �ωpε(t)X̂. (1)

Here P̂ = (1/
√
m�ωp)P and X̂ = (

√
mωp/�)ϕ are the

reduced momentum and position operators, respectively.
The anharmonic dimensionless coupling σ can be tuned
with the bias current; it is small compared to unity. The
effect of a time-dependent external flux Φb(t) is included
via the dimensionless function ε(t) =Φb(t)/Φ0.
The theory described by the Hamiltonian Ĥϕ, the

basis Hilbert space of which is infinite, can be approxi-
mated by a theory described by an effective Hamiltonian
(finite N ×N matrix) Ĥeff =

∑N−1
µ,ν=0〈ψµ|Ĥϕ|ψµ〉|ψµ〉〈ψν |

the basis of which is finite. Hamiltonian Ĥeff reproduces
only the low-energy physics of the system [16]. With the
harmonic oscillator eigenfunctions |ψµ〉 as the expansion
basis, the matrix elements of Ĥϕ can be easily calcu-
lated. The eigenvalues En and wave functions |n〉 of the
effective Hamiltonian can be obtained by diagonalizing
Ĥeff using a unitary transformation Ĥeff =O†Ĥ0O where
Ĥ0 =diag(E0, . . . , EN−1). Once the spectrum and wave

functions are available, all physical information can also
be obtained, especially the matrix elements of the control
Hamiltonian Ĥc in eq. (1). Within the exact diagonal-
isation of Ĥeff , the total Hamiltonian Ĥtot = Ĥϕ+ Ĥc
is transformed into the driven N -level quantum system
Hamiltonian whose form is Ĥ = Ĥ0+ ε(t)ĤI with

Ĥ0 =

N−1∑
n=0

En|n〉〈n|; ĤI = �ωp

N−1∑
n,m=0

dn,m|n〉〈m| (2)

where {|n〉 : n= 0, . . . , N − 1} is a complete set of
orthonormal eigenstates, i.e. the eigenvectors of Ĥeff
corresponding to the energies En. Here, the quantities
dn,m are the transition dipole moments defined by

dn,m = 〈n|X̂|m〉=
∑
µ,ν C̄

µ
nC
ν
m

∫ Λ
−Λ dxψ̄µ(x)xψν(x) where

Cµn = 〈n|ψµ〉 and Λ is on the order of 10
√
�/mωp. The

off-diagonal elements of ĤI induce transitions between
energy eigenstates; the diagonal elements renormalize the
energy eigenvalues, an effect known as the Stark shift.

Quantum optimal-control problem. – Let time t be
in the interval [tI = 0, tF ], for time tF fixed. An arbitrary
state of the system at time t can be represented by the
density matrix ρ acting on CN , the Hilbert space of
dimension N . The density matrix evolves according to the
Liouville-von Neumann equation

i�ρ̇= [Ĥ, ρ]; ρ(0) = ρI (3)

where ρI is the initial state of the system. We will
use optimal-control theory to design a control field ε(t)
which drives our system from an initial state ρI at
time tI = 0 to a desired target state ρd at specified final
time tF . The problem can be formulated in terms of a
cost functional that also takes into account experimental
constraints. Minimizing this cost functional leads to the
desired physical target, thereby satisfying the constraints.
The question as to whether or not there exists a

control that steers the system to a given goal is of
crucial importance. For N -level quantum systems subject
to a single control, this question has been addressed
in [17,18]. In the absence of dissipative effects, the answer
is affirmative because the dynamical Lie group generated
by iĤ0 and iĤI is isomorphic to the unitary group U(N),
which is compact. A target state ρd can be dynamically
reached from ρI if there exists a unitary operator Û ∈
U(N) such that ρd = Û(tF )ρI Û(tF )

† [18]. Actually U(tF )
represents the time evolution operator obeying itself the
Schrödinger equation with the initial condition Û(0) = 1.
The formal solution to the Schrödinger equation can
be written as Û(tF ) = T {exp[− i�

∫ tF
0
dτĤ ]}, where the

symbol T denotes time ordering.

Pontryagin minimum principle. – Suppose the
system is prepared at time tI = 0 in the initial state
ρI . The objective is to compute an appropriate time-
dependent control function ε(t) steering the system from
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the initial state ρI into a target state ρd at fixed final time
tF . The corresponding cost functional may be written as

J =
1

2
‖ρ(tF )− ρd‖2F +

1

2

∫ tF
0

α(t)ε2(t) dt, (4)

where ‖ · ‖F is the Frobenius norm: ‖A‖2F =TrA†A=∑
ij |Aij |2. Here, the first term represents the deviation

between the state of the system at final time ρ(tF ) and the
target state ρd, whereas the second integral term penalizes
the field fluency with a generally time-dependent weight α.
We will illustrate the physical meaning of α(t) for a specific
example below. Minimizing the first term (i.e. the error)
is equivalent to maximizing the state transfer fidelity F =
Tr{ρ(tF )ρd}. Our overall task is to find the control ε(t)
that i) minimizes J [ε(t)] and ii) satisfies both the dynamic
constraint and the boundary condition (3). An optimal
solution of this problem can be obtained using the first
order optimality conditions in the form of the Pontryagin
minimum principle (PMP) [19,20]. These conditions are
formulated using a scalar pseudo Hamiltonian which may
in the present case be cast in the form

H(ρ, ε, λ) := 1
2
α ε2+Tr

{
λ

i�
[Ĥ, ρ]

}
, (5)

where the adjoint state variable λ is an operator Lagrange
multiplier introduced to implement the constraint (3). The
PMP states that the necessary conditions to simultane-
ously minimize J [ε(t)] and satisfy (3) are as follows:

ρ̇= ∂λH=
1

i�
[Ĥ, ρ], ρ̂(0) = ρI ; (6)

λ̇=−∂ρH=
1

i�
[Ĥ, λ], λ(tF ) = ρ(tF )− ρd; (7)

0 = ∂εH= αε+ImTr
{
λ

�
[ĤI, ρ]

}
. (8)

The last condition implies a vanishing gradient of the
functional J , eq. (4), with respect to the control ε, since

δJ

δε(t)
=Re

∫ tF
0

∂εH (ρ(t), λ(t), ε(t)) dt. (9)

Numerically, an iterative procedure based on successive
linearization must be employed to find the optimal control.
Here we will use a gradient-based method in order to find
a solution to the system of the necessary conditions of
optimality, eqs. (6)–(8). More precisely, we have used the
L-BFGS-B routine which is based on a bound constraint
quasi-Newton method with BFGS update rule [21]. This
routine is appropriate and efficient for solving constrained
as well as unconstrained problems.

Population transfer. – We now drive the system
from the ground state |0〉 into one of the excited states
|n〉, for n= 1, 2, 3, . . . as an illustrative example of the effi-
ciency of the control field generated by the optimal-control
algorithm. Suppose the system is in state ρI = |0〉〈0| at

time t= 0. The objective is to force the system to state
ρd = |n〉〈n| for given n at time tF .
A variety of experimental constraints may be imposed

in an optimal-control problem in order to select control
fields that are feasible from a practical point of view [15].
The purpose of the multiplier α(t) in the cost functional
defined in eq. (4) is to force the control field to approach
zero at the initial and final time in accordance with the
experiment. For this we use the shape function [19]

α(t) = α0+α1 (exp [−t/τ ] + exp [−(tF − t)/τ ]), (10)

where the positive constants αj are the penalty parameters
and τ is a rise time. The role of α0 is to penalize high
control field values throughout the time interval [0, tF ];
α1 together with the exponential terms enforces the field
to be nearly zero at the boundaries of the interval [0, tF ]
while simultaneously turning on and off the field smoothly.
Because all the matrix elements of the interaction

Hamiltonian HI defined in eq. (2) are different from
zero the population transfer, for example from the
ground state |0〉 to the excited state |4〉, will involve
several pathways. The population transfer can be realized
via a direct transition: |0〉→ |4〉 or via indirect transi-
tions: |0〉→ |1〉→ |2〉→ |3〉→ |4〉, |0〉→ |6〉→ |4〉 . . . . As a
result, the time structure of the control field emerging from
optimal-control theory will generally be complicated, due
to quantum-mechanical interference between the pathways
the field employs in the process |0〉→ |4〉. The resulting
control field is generally characterized by a frequency
content that is not readily implemented experimentally.
In order to reduce the control field complexity, we resort
to the spectral filter technique. A convenient way to
restrict the optimal field to a single desired frequency ω0
is to filter the gradient by the formula [14,15],

δJ

δε(t)

∣∣∣∣
filter

=F−1
[
g(ω)F

[
δJ

δε(t)

]]
, (11)

where

F
[
δJ

δε(t)

]
(ω) =

1√
2π

∫ +∞
−∞

δJ

δε(t)
e−iωtdt (12)

is the Fourier transform of the gradient of the cost
functional defined in eq. (9) and

g(ω) = e−γ(ω−ω0)
2

+ e−γ(ω+ω0)
2

(13)

is a Gaussian frequency filter, centered around ±ω0
with a narrow width ∼

√
1/γ� ω0. Hence g(ω) = 1 for

ω=±ω0, whereas away from these frequencies it vanishes
exponentially. During the optimization process, the
control variable ε(t) is updated by a filtered gradient in
each iteration. Thus, every spectral component in the
control variable is eliminated except the components
around ω=±ω0. The resulting optimized control field
has a simple intuitive interpretation.
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The restriction of the spectrum to a single frequency
ω0 = (E1−E0)/� simplifies the time structure of the
optimal control. Specifically, the time dependence of
the control field can be interpreted as an input signal
represented by a single oscillation of the form

εopt(t) =A(t) cos [ω0t+φ(t)] (14)

where the amplitude A(t) and phase φ(t) vary slowly with
time compared to ω0. The goal of complex demodulation
is to extract the amplitude and phase as function of
time [22]. First, the original signal εopt(t) is multiplied
by a complex modulation of frequency ω0, yielding
f(t) = εopt(t)e

−iω0t =A(t)[eiφ(t)+ e−2iω0t−iφ(t)]/2. Pass-
ing the resulting signal f(t) trough an ideal low-pass filter
of cutoff frequency ωc <ω0 leads to g(t) =A(t)eiφ(t)/
2 = α(t)+ iβ(t). The time-dependent amplitude and
phase can then be calculated as A(t) = 2

√
α(t)2+β(t)2

and φ(t) = arctan[β(t)/α(t)], respectively.

Results. – We now illustrate the above concepts with
the aid of some representative examples. Throughout
this section, for the numerical simulations of popula-
tion transfer from the ground state |0〉 to one of the
excited states |n〉, we use parameters typical for exper-
iments with current-biased SQUIDs [6]. Time will be
expressed in units of the inverse plasma frequency ωp,
typically 6× 1010 rad/s. The anharmonicity σ= 0.0325;
target time tF = 500/ωp, chosen to be short enough to
avoid substantial relaxation and decoherence phenomena;
time step ∆t= 3.0× 10−2/ωp corresponding to M = 214
as the number of mesh points; frequency filter ω0 = (E1−
E0)/�; penalties factors α0 = 10

−1; α1 = 102 and rise time
τ = 102/ωp.
We start by considering the population transfer in a

two-level system, N = 2. It is well known that popula-
tion transfer can be obtained within the rotating wave
approximation (RWA) by applying a so-called π-pulse:
a time-dependent signal of frequency ω0 =E1−E0 (i.e.
resonant with the level spacing) with duration equal to
half of the so-called Rabi period. It is useful to study this
simple example with the help of optimal-control theory, as
it enables one to compare to the known result for a π-pulse
and hence test the numerical implementation; it also sheds
some light on the functioning of the control procedure.
We first study the response of a two-level system to

a π-pulse. The pulse is shown fig. 2(b), its complex
demodulation is shown in panels (c) and (d). The response
of the two-level system is obtained numerically and shown
in fig. 2(a); we see that perfect population transfer is
achieved. We subsequently use the π-pulse of fig. 2(b)
as a guess for an optimal-control simulation, the results
of which are shown in fig. 3. It can be seen that the
application of optimal control slightly modifies the original
π-pulse. Specifically, the overall amplitude is smaller as a
result of the minimal amplitude constraint we imposed;
the pulse duration has increased in order to conserve the

Fig. 2: Population transfer from the ground state |0〉 to the
excited state |1〉, following a π-pulse. Panel (a) shows the
numerically obtained evolution of populations, (b) and (c),
respectively, show the π-pulse and its numerically obtained
power spectrum. The amplitude of the pulse vs. time is
also shown in panel (b) while the numerically obtained time
evolution of the phase is displayed in the panel (d).

Fig. 3: Optimal control of population transfer from the ground
state |0〉 to the excited state |1〉: (a) shows the evolution of
populations, (b) and (c), respectively, show the selected control
field and its power spectrum. The amplitude of the control field
vs. time is also shown in the panel (b) while the time evolution
of the phase is displayed in the panel (d).

total area of the envelope and hence the π nature of the
pulse.
We next wish to implement a population transfer from

the ground state |0〉 to the excited state |1〉 in a multi-
level system with N = 6. As an initial guess we use the
π-pulse of fig. 2(b). The response of the seven-level system
to this guess is shown in fig. 4(a): the presence of the
levels beyond n= 1 clearly leads to strong contamination
effects that limit the efficiency of the transfer. We then
use the initial guess as a starting point for an optimal-
control simulation; the resulting optimal pulse is shown in
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Fig. 4: Population transfer from the ground state |0〉 to the
excited state |1〉 in a seven-level system, using a π-pulse; (a),
(b), (c) and (d), as in the previous figure. Panels (b) and (d)
coincide with those of fig. 2.

Fig. 5: Control of population transfer from the ground state
|0〉 to the excited state |1〉 in a seven-level system, using the
π-pulse as a guess; (a), (b), (c) and (d), as in the previous
figure.

fig. 5(b), the result of the corresponding population trans-
fer in panel (a). We verified that a transfer from |0〉 to |1〉
can also be achieved in principle with a π-pulse similar to
the one shown in fig. 4(b). However, the overall amplitude
of the required pulse should be much smaller (by about a
factor ten) in order to avoid non-resonant transitions to
the higher levels. Accordingly the resulting duration would
be ten times longer, thereby exceeding typical relaxation
and decoherence times.
Finally, in fig. 6, we show an optimal-control simulation

for the population transfer from the ground state |0〉 to the
excited state |4〉. As can be seen by comparing panel (a)
of fig. 6 with that of fig. 5, this transfer involves enhanced
occupation during manipulation of the excited states of
the system. We therefore expect transfers to higher states
to be less robust against noise than transfers to low-lying
excited states (see also the next section).

Fig. 6: Control of population transfer from the ground state
|0〉 to the excited state |4〉 in a seven-level system; (a), (b), (c)
and (d), as in the previous figure.
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Fig. 7: Sensitivity of the population transfer to a small
amplitude perturbation of the optimal-control field.

Sensitivity analysis. – In applications, the system
parameters are usually not fixed but may be subject to
perturbations and noises. For instance, the environment
of the dc SQUID induces time-dependent fluctuations of
the bias current and flux. Because of the external pertur-
bations, practical devices are not capable of operating
precisely neither at the prescribed system parameters nor
at the computed control field. Then, it is of great impor-
tance to know the sensitivity of the optimal solution with
respect to perturbations of any of the system parameters.
In this section, we shall only consider the influence of slow,
adiabatic fluctuations. In the presence of this so-called
adiabatic noise, the system parameters remain constant
during a given manipulation but fluctuate during repeti-
tive measurements needed to obtain quantum statistics.
In order to develop some feeling for the sensitivity of

the model system discussed here with respect to adiabatic
noise, we show in fig. 7 the effect of a small static
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Fig. 8: (Colour on-line) Sensitivity of the population transfer
fidelity to the random fluctuations of the anharmonic coupling.

amplitude fluctuation ∆ε (of about 1%) with respect to
the optimal amplitude on the result of the optimal control
of a seven-level system when a population transfer from
|0〉 to |1〉 is sought (panels (a) and (b)) or when a transfer
from |0〉 to |4〉 is sought (panels (c) and (d)). As is to be
expected, the sensitivity to such a fluctuation is larger in
the latter case, which involves more excited states during
transfer.
We finally consider the effect of a slow variation of

a system parameter during application of an optimal-
control pulse. Specifically, we assume variations of the
anharmonic coupling σ to occur when the same optimal-
control sequence is repeated many times. Because the
anharmonic coupling depends on the so-called working
point, every random perturbation that changes the bias
current or flux changes the parameter σ leading to uncer-
tainties in the eigenvalues En and the transition dipole
moments dn,m in eq. (2). In fig. 8 we show a plot of
the state transfer fidelity F as a function of σ, calculated
for a control field optimized for the case σ= σ̄= 0.0325.
The fidelity drops as σ deviates from σ̄; we see again
that it decreases faster as transitions to higher levels are
considered. From this result we can calculate the average
fidelity F̄ = 1

i0

∑i0
i=1 Fi =

1
i0

∑i0
i=1 Tr{ρi(tF )ρd}, when the

optimized control sequence is repeated i0 times, assum-
ing σ to be a normally distributed random variable with
a mean σ̄= 0.0325 and a standard deviation ∆σ= σ̄/16.
This choice corresponds to a typical experimental low-
frequency noise present in phase qubits [4,5], yielding a
Q-factor of about 1000. We find the following average
state transfer fidelities: F̄|0〉→|1〉 = 85%, F̄|0〉→|2〉 = 73%,
F̄|0〉→|3〉 = 60%, and F̄|0〉→|4〉 = 55%. If the low-frequency
noise will be reduced only by a factor five (Q-factors
∼ 5000), all the above fidelities remain larger than 95%.

Conclusion. – Using optimal-control theory, we have
studied the possibility of a population transfer from
the ground state to an arbitrary excited state of a
superconducting quantum N -level system. We have found
that such state transfer can be obtained with good fidelity,
using optimized pulses which can be realized using existing

microwave technology. We have considered the effects of
low-frequency noise and found that it reduces the average
state transfer fidelity. Using parameters describing actual
phase qubits, we find a loss of fidelity of about 15% for
the transfer from level |0〉 to |1〉 up to 45%, for a transfer
from level |0〉 to |4〉. However, a substantial improvement
of fidelity is possible by slightly decreasing the effects of
low-frequency noise.
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