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Abstract – A possibility of holonomic quantum computation based on the defect-mediated
properties of graphite cones is discussed. Using a geometric description for the conical graphene,
we demonstrate how one can construct the most important one-qubit quantum gates without
invoking the adiabatic approximation. The control parameter which defines a particular qubit
configuration is directly linked with the number of removed sectors in the graphene layer needed
to create a particular conical configuration.
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Introduction. – The idea of Holonomic Quantum
Computation (HQC) is based on non-Abelian geometric
phases [1], called holonomies [2,3]. The holonomies (the
unitary transformations) have been proposed as quantum
gates in many different implementations [4–13]. Recently,
a feasible scheme for HQC realization in superconducting
charge-phase qubits in a cavity has been suggested [14]
which allows to implement a universal set of holonomic
gates by modulating the corresponding experimentally
controllable parameters.
Usually [5,6], in order to realize holonomic quantum

gates, the adiabatic theorem needs to be taken into
account. It means that the control parameters are chosen
in the form adiabatically driven along the loops in the
control manifold M. These quantum gates are gener-
ated in the subspace CN spanned on eigenvectors corre-
sponding to the family of Hamiltonians F = {H(λ) =
U(λ)H0U

†(λ);λ∈M}, where U(λ) is the unitary oper-
ator and λ is the control parameter [5,6].
The action of each quantum gate on one initial state
|ψ〉in is described by the unitary operator U which brings
it to a final state |ψ〉out =U |ψ〉in. This can be viewed in
the following way [15]:

|ψ〉out = e−iE0t ΓA (C) |ψ〉in , (1)

where the first factor is the dynamical phase (which can be
omitted if we redefine the energy levels by taking E0 = 0).
The second factor is the holonomy, ΓA(C)∈U(n) [3,5,6].
(a)E-mail: furtado@fisica.ufpb.br

In this paper we follow the approach suggested by
Aharonov and Anandan [16] based on calculation of the
phase change of the wave function without adiabatic
approximation. We shall consider all cyclic evolutions that
can influence the phase change. As we shall show, the
phase acquired by the wave function can be obtained via
the holonomy directly, using the three-dimensional metric
for the defect-mediated conical graphene. As a result,
the holonomies associated with the conical graphene can
be viewed as quantum logical gates for the most recogniz-
able one-qubit configurations.
Recall that the phase change obtained by Aharonov and

Anandan [16] is given by

β =

∫ τ
0

〈
ψ̃
∣∣∣ i d
dt

∣∣∣ψ̃〉dt (2)

with |ψ̃〉=U |ψ〉. Notice that in the above expression the
phase β is independent of the Hamiltonian H for a given
closed curve C.
The holonomy, ΓA, is defined by the following expres-

sion:

ΓA (C) = P exp

(∮
Λµdx

µ

)
, (3)

where P denotes the path ordering and Λµ is the gauge
potential. In what follows, we propose how to realize one-
qubit gates for a graphite cone using these holonomies.
Notice that the connection of (3) comes from a simi-
lar relation to Aharonov-Anandan connection (2) where
the projective space is the degenerate subspace of the
Hamiltonian of the system.

30002-p1



K. Bakke et al.

Fig. 1: Defect-free graphene lattice.

Topological defects in graphene. – The band of
conduction of the graphene, which consists of a graphite
layer, can be described by the tight-binding model. It is
a two-dimensional material formed by an isolated layer of
carbon atoms arranged in a honeycomb-like lattice (see
fig. 1). In this context, the Fermi surface reduces to two
K-points located in the Brillouin zone. In the low-energy
limit, the graphene properties can be described by the
free fermions theory [17] within a continuum model based
on the Dirac equation [18,19]. Namely, in the absence
of interactions (and in the above-mentioned limit), the
Hamiltonian of the system reads

H0 =−i� vf (σx∂x+σy∂y) . (4)

Here, σi are the Pauli spin matrices (acting on the A/B
labels) and vf is the Fermi velocity. The corresponding
states of this system are labeled by the direction of the
wave vectorK and the index A or B for the sublattices. We
represent these states as |K±, A〉 and |K±, B〉. Note that
the Fermi level space is four-dimensional. So we can choose
these states as a basis considering that K− =−K+ with
the x axis being along K+. Thus, the above-introduced
Hamiltonian describes transfer of an electron only from A
sublattice to B sublattice and vice versa.
Recently, a number of papers [18–21] investigated the

influence of topological defects in graphene layers on the
transport properties of graphene. Topological defects in
graphene can be conceptually generated by a “cut and
glue” process, known in the literature as the Volterra
process. If one cuts a π/3 sector and glues the opposite
sides (as it is shown, e.g., in [21,22]), one obtains two
equations that can be interpreted in terms of the fluxes of
fictitious gauge fields through the apex of the cone. One
of them measures the angular deficit of the cones when
a vector is transported in parallel around the apex and

is generated by the variation of the local reference frame.
The flux produced by this part acts only on A/B labels
defined earlier and it reads [21,22]

∮
ωµ dx

µ =−π
6
σz, (5)

while the second part, which is called the K spin flux and
which mixes K+ and K− components, gives

∮
Aµ dx

µ =
π

2
τy (6)

It is important to note that τ i are the Pauli matrices which
act only on the K± space.
By removing a π/3 sector of the lattice and gluing the

edges we form a pentagon in the structure. In this way,
the lattice acquires a conical geometry where the apex is
characterized by the presence of a pentagon. In particular,
this type of geometry has been studied in a gravity
context where it is believed to be produced by cosmic
strings [23] in the early universe. In condensed matter,
the topological defect created by inserting or removing an
angular sector is called disclination (this defect introduces
curvature in the media [24]). In such a way, the presence
of a pentagon (heptagon) introduces a locally positive
(negative) curvature in the graphene layer [25,26]. To
study the electronic properties due to the presence of a
topological defect in graphene, it is natural to formulate
the Dirac equation in curved space induced by this defect.
The conical graphene leaves are described by the three-
dimensional metric in the continuum approximation

ds2 =dt2−dρ2−α2ρ2dφ2, (7)

where α is the deficit or excess angle related to the angular
sector λ (which is the sector that is removed or inserted
to form the defect) as α= 1±λ/2π. We also can relate
the deficit/excess angle to the number of sectors removed
from the graphite monolayer in the following way:

α= 1− nΩ

6
. (8)

The values of α in the interval 0<α< 1 (1<α<∞) mean
that we remove a sector from (insert a sector in) the
leaf to form the defect. It is worth noting that eq. (7)
also characterizes the geometry of a cosmic string in the
two-dimensional space [27].
Let us now construct the holonomies associated with

the two-dimensional metric of conical graphene. The
corresponding holonomy is given by

U (C) = P exp

(
−
∮
Γµ(x) dx

µ

)
, (9)

where Γµ(x) is the so-called spinorial connection. We
can calculate the spinorial connection by defining a local
reference frame at each point along the closed curve. The
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local reference frame can be expressed via the tetrads as
follows:

gµν (x) = ηab e
a
µ e
b
ν , (10)

where the Greek indices run µ= t, ρ, z, φ and Latin indices
run a= 0, 1, 2, 3. In turn, the tetrads obey the following
conditions:

eaµ e
µ
b = δ

a
b , eµa e

a
ν = δ

µ
ν . (11)

To satisfy the above conditions, we can choose our
tetrads as follows:

eaµ =


 1 0 0
0 cosϕ −αρ sinϕ
0 sinϕ αρ cosϕ


 . (12)

The inverse tetrads read

eµa =


 1 0 0
0 cosϕ sinϕ

0 − sinϕ
αρ

cosϕ
αρ


 . (13)

With the above-defined local reference frame, we
can introduce the spinorial connection in the standard
way [28]:

Γµ (x) =
i

4
ωµab Σ

ab =−1
8
ωµab

[
γa, γb

]
, (14)

where the Dirac matrices γa are reduced in our case to the
Pauli matrices, γa = σa. The term ωaµb is the one-form or
spin connection which is obtained by the variation of the
local reference frame along the curve, δeaµ. Namely

ωaµb =−eaβ
(
∂µe

β
b +Γ

β
µν e

ν
b

)
, (15)

where Γαµν are the Christoffel symbols.
Now we can obtain the expression for two non-zero

spin connections for the metric ω2φ1 =−ω1φ2 = 1−α. The
resulting spinorial connection reads

Γφ =
i

2
(1−α) σ3. (16)

The holonomy matrix, U1(C), that stands for parallel
transport of a spinor along a path C around the cone is

U1(α) = cos [(1−α)π] + iσz sin [(1−α)π]
= cos

(nΩ
6
π
)
+ iσz sin

(nΩ
6
π
)
. (17)

This expression gives the quantum phase acquired by the
wave function when it is parallel transported around
the symmetry axis of the topological defect (see fig. 2).
The expression (17) is sufficient to construct a one-qubit
gate without specification of the taken path.
The second holonomy matrix associated with the

graphene was earlier considered by Lammert and
Crespi [20,21]. They assumed that the gauge transforma-
tion on theK spin part is a rotation about the 2-axis. This
transformation takes into account the exchange between

A and B sublattices when the π/3 sector is removed and
the opposite sides are glued together. The final expression
for this holonomy matrix reads [20,21]

U2 (nΩ) = Tl−m
(
cos
(nΩ
2
π
)
− i τy sin

(nΩ
2
π
))

. (18)

Here Tl−m corresponds to the translation of the lattice
vector (l,m) acting on Bloch states (which depends only
on n−m (mod3)) while the Pauli matrix τy, in the expres-
sion (18), acts on theK part of the spinor component. The
term Tl−m gives us two different expressions for the quan-
tum flux in the K spin part, corresponding to either l=m
or l �=m. Let us rewrite the above expressions in terms of
the control parameter α. We have

U2(α) = cos(3π(1−α))− iτy sin(3π(1−α)) (19)

for l=m and

U2(α) = e
−iπ6 σ3 [cos (3π (1−α))− iτy sin(3π(1−α))]

(20)
for l �=m, respectively.
Graphene quantum gates. – We suggest to realize

one-qubit quantum gates based on graphene cones through
the appropriate choice of the control parameter α within
the range 0<α< 1. This can be done by removing a
number of sectors in the graphene layer. For example, if
we want to construct a quantum gate using the holonomy
U1(α), we need a configuration with the holonomy U2(α)
given by (19) or (20) be equal to the identity matrix.
On the other hand, if we want to construct a quantum
gate using the holonomy U2(α), we need to impose the
condition U1(α) = 1. We can obtain the first configuration
by taking the value of α that gives an even number of
removed sectors in the construction of the graphene cone
between two graphene slices without defects. The second
configuration is obtained by the application of the so-
called multicones [27] where we take two cones: one that
has the flux (5) and the other with the opposite flux. The
first flux is given by a cone that was made by removed
sectors, while the second flux is created by the excess of
sectors between two graphene slices without defects.
However, in order to realize the holonomic quantum

computation in graphene, first of all we need to estab-
lish the logical space. Since the Fermi level space is
four-dimensional, we can introduce the following two-
component logical states:

|0L〉= |K+, A/B〉 ,
|1L〉= |K−, A/B〉 ,

(21)

assuming that the σi matrices act on the A/B sublattices
of the logical states as I ⊗σi (with I being the 2× 2
identity matrix) providing a phase shift according to the
electron transfer between the A and B sublattices, while
the τ i matrices act on the K-spin part of the logical states
as τ i⊗ I providing the mixing between the K+ and K−
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Fig. 2: Phase-shift gate Q2, given by expression (23),
constructed with a cone of graphene with two removed π/3
sectors (shown in gray). We can see how the presence of defect
distorts the lattice of the graphene. The arrow indicates the
direction of motion of the electron when it passes around the
topological defect.

Fermi points. Since σi and τ i related logical subspaces do
not interfere with each other, no information leakage is
expected in the qubits suggested here.
The first case where we build a one-qubit quantum gate

corresponds to the choice of the control parameter α= 1/3
with l=m. In this case we obtain U2(1/3) = 1 and the
associated one-qubit quantum gate is given by

Q1 =U1 (1/3) =
(
1 0

0 e−i
4π
3

)
. (22)

Likewise, if we choose α= 2/3 with l=m, we obtain

Q2 =U1 (2/3) =
(
1 0

0 e−i
2π
3

)
, (23)

which is another one-qubit phase-shift gate, up to a global
phase. Notice that this quantum gate does not change the
Fermi points, but it provides a phase shift in the logical
states (21) depending on the transfer of one electron
between the sublattices A and B.
Observe that the phase gate Q1 requires that nΩ = 4

sector of the graphene layer be removed before the cone
is constructed, while Q2 phase gate realization requires
removal of nΩ = 2 sector. Figure 2 shows the graphene
layer with a conical defect (disclination) corresponding to
removal of two π/3 sectors.
The second case is the choice of the control parameter

α= 5/6 with l=m. Now we want to use two cones of
graphene with opposite fluxes between two graphene
slices. As was pointed out in [27], the behavior of these
cones is identical to the behavior of multicones when
we have neffΩ =

∑m
i=1 n

i
Ω for the number of removed

sectors. The formation of this topological defect in the
graphene layer is depicted in fig. 3, where we have a

Fig. 3: The swap and phase quantum gate: one cone
constructed with one sector removed and other cone with one
sector inserted. The net result is identical to the behavior of
multicones where the fluxes of the cones cancel each other. The
arrow indicates the direction of the motion of an electron which
passes around the multicone.

dipole of conical defects forming a dislocation (pentagon-
heptagon pair) [26]. In this case, the associated one-qubit
quantum gate is given by (using the notation of [29])

QS =U2 (5/6) = e−iπ2
(
0 −i
i 0

)
. (24)

It represents swap and phase quantum gate that acts on
both logical states (21) by changing the K± Fermi points
and providing a phase shift.
Hence, the swap and phase gate can be realized if we

construct the cone after the removal of neffΩ = 1 sectors
from graphene layer (up to a global phase factor of π/2).
If we choose α= 1/2, we obtain the same quantum gate

but with neffΩ = 3 removed sectors. Likewise, if we choose
α= 1/6, the corresponding quantum gate is obtained

with neffΩ = 5 removed sectors (up to a global phase factor
of −π/2).
The third case is related to situations when l �=m. Let us

take α= 1/3 as an example. The quantum gate associated
with this choice is given by

Qz = e−iπ6 σ3 U1 (1/3) = eiπ2
(
1 0
0 −1

)
(25)

and represents an analog of the Z-Pauli gate [29], up to
a global phase factor. Notice that this quantum gate acts
on the logical basis (21) which depends on the transfer of
one electron between the sublattices A and B, but it does
not change the Fermi points.
This quantum gate can be built with one cone of

graphene between two slices of graphene without defects
where nΩ = 4 sectors were removed (up to a global phase
factor of π/2). As expected, if we take α= 2/3, we obtain
the same quantum gate but with nΩ = 2 removed sectors
in the cone. This quantum gate is identical to the phase
gate Q2 shown in fig. 2.
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Conclusion. – We have suggested a possibility to real-
ize one-qubit gates for a holonomic quantum computer
associated with defect-mediated properties of conical
graphene. The feasibility and implementation of the
construction suggested here is based on the realistic possi-
bility to incorporate topological defects (disclinations and
dislocations) into the graphene structure in a controllable
way [30,31] allowing to modify the geometric properties
of the layers needed to create specific quantum gates. For
each cone or multicones in the graphene layer, there is a
specific quantum phase acquired by the wave function of
moving particles which encircles the topological defect.
This quantum phase is equivalent to the Aharonov-
Anandan quantum phase [16] and provides the realization
of the elementary one-qubit quantum gates without using
the adiabatic approximation for the implementation of
the holonomic quantum computation [2,3]. The control
space M becomes the structure of the topological defect
inserted in the graphene monolayer (which is, in this
case, a disclination represented by the control parameter
α). More precisely, the control parameters governing the
qubit operations have been linked with the number of
removed sectors nΩ in the graphene monolayer needed to
create a specific conical configuration. In particular, we
have shown that a graphite cone with nΩ = 4 removed
sectors is equivalent to a phase-shift gate. By combining
different defect structures in graphene layers, we managed
to construct the so-called Z-Pauli and swap and phase
quatum gates. However, to obtain a universal set of
quantum gates in this approach, we need to construct a
two-qubit gates. We hope to report on this possibility in
a future paper.

∗ ∗ ∗
This work was partially supported by PRONEX/

FAPESQ-PB, FINEP, CNPq, CAPES and CAPES/
PROCAD.

REFERENCES

[1] Wilczek F. and Zee A., Phys. Rev. Lett., 52 (1984)
2111.

[2] Zanardi P. and Rasetti M., Phys. Lett. A, 264 (1999)
94.

[3] Pachos J., Zanardi P. and Rasetti M., Phys. Rev. A,
61 (2000) 010305R.

[4] Unanyan R. G., Shore B. W. and Bergmann K., Phys.
Rev. A, 59 (1999) 2910.

[5] Pachos J. and Chountasis S., Phys. Rev. A, 62 (2000)
052318.

[6] Pachos J., Phys. Rev. A, 66 (2002) 042318.
[7] Faoro L., Siewert J. and Fazio R., Phys. Rev. Lett.,
90 (2003) 028301.

[8] Li Y., Zhang P., Zanardi P. and Sun C. P., Phys. Rev.
A, 70 (2004) 032330.

[9] Cholascinski M., Phys. Rev. B, 69 (2004) 134516.
[10] Fuentes-Guridi I., Girelli F. and Livine E., Phys.

Rev. Lett., 94 (2005) 020503.
[11] Zhang P., Wang Z. D., Sun J. D. and Sun C. P., Phys.

Rev. A, 71 (2005) 042301.
[12] Florio G., Facchi P., Fazio R., Giovannetti

V. and Pascazio S., Phys. Rev. A, 73 (2006)
022327.

[13] Zhang X. D., Zhang Q. and Wang Z. D., Phys. Rev.
A, 74 (2006) 034302.

[14] Zhi-Bo Feng and Xin-Ding Zhang, Phys. Lett. A, 372
(2008) 1589.

[15] Lloyd S., Phys. Rev. Lett., 75 (1995) 346.
[16] Aharonov Y. and Anandan J., Phys. Rev. Lett., 58

(1987) 1593.
[17] Di Vincenzo D. P. and Mele E. J., Phys. Rev. B, 29

(1984) 1685.
[18] Gonzales J., Guinea F. and Vozmediano M. A. H.,

Phys. Rev. Lett., 69 (1992) 172.
[19] Gonzales J., Guinea F. and Vozmediano M. A. H.,

Nucl. Phys. B, 406 (1993) 771.
[20] Lammert P. E. and Crespi V. H., Phys. Rev. Lett., 85

(2000) 5190.
[21] Lammert P. E. and Crespi V. H., Phys. Rev. B, 69

(2004) 035406.
[22] Pachos J. K. and Stone M., Int. J. Mod. Phys. B, 21

(2007) 5113.
[23] Vilenkin A., Phys. Rep., 121 (1985) 263.
[24] Nelson D. R., Defects and Geometry in Condensed

Matter Physics (Cambridge University Press) 1982.
[25] Cortijo A. and Vozmediano M. A. H., EPL, 77 (2007)

47002.
[26] Cortijo A. and Vozmediano M. A. H., Nucl. Phys. B,

763 (2007) 293.
[27] Furtado C., Moraes F. and Carvalho A. M. de M.,

Phys. Lett. A, 372 (2008) 5368.
[28] Nakahara M., Geometry, Topology and Physics (Insti-

tute of Physics Publishing, Bristol) 1998.
[29] Nielsen M. A. and Chuang I. L., Quantum Compu-

tation and Quantum Information (Cambridge University
Press) 2000.

[30] Ewels C. P., Heggie M. I. and Briddon P. R., Chem.
Phys. Lett., 351 (2002) 178.

[31] Capio A., Bonilla L. L., de Juan F. and Vozmediano
M. A. H., New J. Phys., 10 (2008) 053021.

30002-p5


