

Drop propulsion in tapered tubes

To cite this article: P. Renvoisé et al 2009 EPL 87 39901

View the article online for updates and enhancements.

You may also like

- <u>Colossal Seebeck coefficient in strongly</u> <u>correlated semiconductor FeSb</u>
 A. Bentien, S. Johnsen, G. K. H. Madsen et al.
- Spontaneously bended nematic and antiferroelectric smectic structures of banana-shaped hard particles in two dimensions
- J. A. Martínez-González, S. Varga, P. Gurin et al.
- <u>Drop propulsion in tapered tubes</u>
 P. Renvoisé, J. W. M. Bush, M. Prakash et al.

EPL, **87** (2009) 39901 doi: 10.1209/0295-5075/87/39901 www.epljournal.org

Erratum

Drop propulsion in tapered tubes

P. RENVOISÉ¹, J. W. M. BUSH¹, M. PRAKASH² and D. QUÉRÉ³

¹ Department of Mathematics, MIT - 77 Massachusetts Avenue, Cambridge, MA 02139, USA
 ² Center for Bits and Atoms, MIT - 20 Ames Street, Cambridge, MA 02139, USA
 ³ PMMH, UMR 7636 du CNRS, ESPCI - 10 rue Vauquelin, 75005 Paris, France, EU

Original article: Europhysics Letters (EPL), 86 (2009) 64003.

PACS 99.10.Cd - Errata

Copyright © EPLA, 2009

Due to a technical problem occurred in production, figs. 6 and 7 were displayed in an incomplete and erroneous form. We publish here again the correct figures sincerely apologizing to the authors for the unpleasant inconvenience.

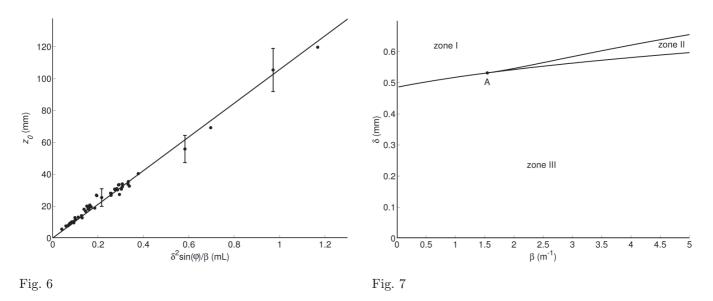


Fig. 6: Equilibrium position z_o of drops of silicone oil inside inclined capillary trumpets of inner radius $a(z) = \delta + z^2$, as a function of the quantity $\delta^2 \sin \varphi / \beta$ which depends on the tube splay β , the tip width δ and the tilt angle φ . As expected from eq. (4), the data collapse onto a single line, whose slope, $0.106 \pm 0.010 \text{ mm}^{-2}$, is close to the anticipated value $\kappa^2/4 = 0.111 \text{ mm}^{-2}$. The data were obtained by varying δ between 0.1 and 0.6 mm, φ between 1 and 50° and β between 0.1 and 5 m⁻¹.

Fig. 7: Calculated stability diagram of wetting drops of volume $\Omega = 3 \text{ mm}^3$ in a trumpet-shaped tube of inner radius $a(z) = \delta + \alpha z + \beta z^2$, with $\alpha = 1.5^\circ$, and inclined at 30° relative to the horizontal. In zone III, the drop climbs. In zone I, it slides downwards. A stable-equilibrium position only arises in zone II. Note that the zone of stability is diminished relative to that evident in fig. 5 (obtained for $\alpha = 0$): to the left of point A, no stable-equilibrium height exists.