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Abstract – We investigate the induced geodesic deviation equations in the brane world models, in
which all the matter forces except gravity are confined on the 3-brane. Also, the Newtonian limit of
induced geodesic deviation equation is studied. We show that in the first Randall-Sundrum model
the Bohr–Sommerfeld quantization rule is as a result of consistency between the geodesic and
geodesic deviation equations. This indicates that the path of test particle is made up of integral
multiples of a fundamental Compton-type unit of length h/mc.
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The mission to formulate a consistent quantum theory
of gravity has maintained physicists busy since the first
attempt by Rosenfeld in 1930. In spite of much work,
no definitive progress has been made. Nowadays, there
are many interesting attempts to quantize gravity. In this
paper we take an opposite direction: we will show that
quantum objects can be constructed from gravitational-
geometrical effects. Actually, the idea of geometrization
of quantum mechanics has been considered in different
approaches. For example, one can increase the number of
dimensions of spacetime in Kaluza-Klein (KK) models of
gravity [1], Weylian spacetime [2], scalar-tensor theories of
gravity [3] or other possible extensions of Einstein general
relativity. Recently, it has been shown that the existence of
non-compact extra dimensions leads to quantum effects in
the classically induced 4-dimensional (4D) physical enti-
ties [4]. In [5], to construct semi-classical quantum gravity
from geometric properties of brane, the authors have used
the Induced Matter Theory (IMT) which is an extension
of the KK theory. In this approach, not only the gauge
fields are unified with gravity (geometry) but also the
matter fields are unified with gravity and have geometrical
origin, constructed from extrinsic curvature [6]. The origin
of quantum effects in fact is the fluctuation of matter fields
around 4D spacetime.
In this paper we discuss the existence of quantum effects

in the most famous model of brane gravity. In this model
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and its extensions, the presence of non-compact extra
dimension is not in fact for the unification shame, but
for the explanation of hierarchy problem without using
supersymmetry [7].
The idea that our familiar 4D spacetime is a hyper-

surface (brane) embedded in a 5D bulk has been experi-
encing a phenomenal interest during the last decade. The
behavior of geodesics and the Newtonian limit of linearized
gravity for the Randall-Sundrum (RS) and an alternative
brane background have been investigated extensively [8].
Also, ref. [9] has looked into the geodesic motions of a test
particle in the bulk spacetime in RS scenario. The induced
4D geodesic equation on the brane, to which we assume
that the matter fields except gravity is confined, is given
by [10]

d2xµ

dτ2
+Γµαβ

dxα

dτ

dxβ

dτ
= 0, (1)

where τ is the proper time defined on the brane and
Γµαβ are 4D Christoffel symbols derived from the induced
metric. (Here and throughout we shall use A,B = 0, 1,
2, 3, 5 to denote 5D coordinates, µ, ν = 0, 1, 2, 3 to denote
the standard 4D ones and Ā= 1, 2, . . . , 5, µ̄= 1, 2, 3
denotes spacelike counterparts).
Note that in eq. (1) the effect of the existence of bulk

space is hidden in the induced metric which one can obtain
via induced Einstein field equations [11]. To obtain the
induced geodesic (1), we usually start from the geodesic
equation of a test particle in the bulk space and then
reduce it to the 4D hypersurface. One can use the same
procedure to acquire induced geodesic deviation (GD)
equation. For example in the Kaluza-Klein theory authors
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of [12] used the same method to obtain GD on this kind
of compact models. Hence, we start with the GD equation
associated to the bulk space, namely

(5)D2ξA

DS2
=RABCD dx

B

dS

dxC

dS
ξD, (2)

where RABCD is the Reimann tensor for the bulk space,
ξA is an infinitesimal GD vector, D/DS denotes the pull-
back of covariant derivatives and S is an affine parameter
for the bulk space. To induce eq. (2) on the brane we need
induced components of the Reimann tensor of the bulk
space on the brane, i.e. Gauss-Codazzi equations. In the
Gaussian normal frame, explicit calculation directly gives

Rµαβγ =Rµαβγ +KαβKµγ −KαγKµβ , (3)

and
Rµ4α4 =Kµα,4−KσαK µ

σ , (4)

where Rµαβγ is the 4D Reimann tensor and Kµν denotes
the extrinsic curvature. Inserting eqs. (3) and (4) into the
eq. (2) gives

D2ξµ

DS2
=
(
Rµαβγ +KαβK

µ
γ −KαγKµβ

) dxα
dS

dxβ

dS
ξγ

+ ε
(
Kµα,4−KασKσµ

)[dx4
dS

dxα

dS
ξ4−
(
dx4

dS

)2
ξα

]
.

(5)

Now the derivatives with respect to the 5D line element
dS, should be replaced by derivatives with respect to the
4D Affine parameter. To this end, we rewrite eq. (5) with
a general parameter λ, which parameterizes 4D motion as

(5)D2ξµ

DS2
=

(
dλ

dS

)2 (5)D2ξµ
Dλ2

+
dλ

dS

d

dλ

(
dλ

dS

)
(5)Dξµ

Dλ
, (6)

where the relation between 5- and 4–dimensional covariant
differentiations is given by

(5)Dξµ

Dλ
=
dξµ

dλ
+(5) ΓµAB

dxA

dλ
ξB =

Dξµ

Dλ

−εKµα
dxα

dλ
ξ4− εKµα

dx4

dλ
ξα, (7)

so that in the second equality, 5D Christoffel symbols have
been replaced by their 4D counterparts using the relations
obtained in ref. [10]. Now, from eqs. (5), (6) and (7) we
obtain

D2ξµ

Dλ2
=Rµαβγ

dxα

dλ

dxβ

dλ
ξγ

+
(
KαβK

µ
β −KαγKµβ

) dxα
dλ

dxβ

dλ
ξγ

+ε
(
Kµα,4−KραKµρ

) [dxα
dλ

dx4

dλ
ξ4−

(
dx4

dλ

)2
ξα

]

−
[
Dξµ

Dλ
−εKµα

(
dxα

dλ
ξ4+
dx4

dλ
ξα
)](
dλ

dS

)−1
d

dλ

(
dλ

dS

)
.

(8)

The above-induced GD equation can be used in vari-
ous brane models. For example, in the IMT [4,13], test
particles are not in general, confined to the specific fixed
brane [14]. In this case, since the extra component of
velocity of test particle, u4 =dx4/dλ, does not vanish,
all the extra terms on the right-hand side of eq. (8) will
be present. Another important point in the IMT is the
choice of λ, the parameterization of the path. Usually,
it is assumed that the line element of the brane, which
is defined here as the proper time “dτ”, is logical and
convenient. However, the non-integrability property of the
induced physical quantities on the brane dictates that
the parameterization of the path is, in general, diferent
from the 4D proper time [14]. On the other hand, in the
brane phenomenological models where matter fields are
confined to the fixed brane, the 4D proper time defined
on the brane is required as a suitable parameterization
of the motion. In this paper, we would like to study
GD in brane models based on the Horava and Witten
theory [15], hence, we will assume that all the matter
fields, except gravity, are confined on the fixed brane.
Therefore, in eq. (8), dλ will be substituted by dτ , the
proper time defined on the brane. Furthermore, we assume
that the velocity of test particles along the extra dimen-
sion vanishes. Imposing the above assumptions on eq. (8),
we obtain

D2ξµ

Dτ2
= Rµαβγu

αuβξγ

+
(
KαβK

µ
γ −KαγKµβ

)
uαuβξγ , (9)

where uα = dx
α

dτ denotes the 4-velocity of test particles
defined on the brane.
In general relativity, the Newtonian limit of GD

equation leads us to the form of the field equations [8].
Hence we derive and analyze the Newtonian limit of
eq. (8). We elaborate on tensor equation (2) in the local
rest frame for one of the two test particles A1 and A2
with coordinates xA(s, η) and xA(s, η+ δη), respectively.
In this frame GAB = ηAB and dS =dt. This means that
A1 promotes its clock to the master clock indicating
coordinates time. Also, (5)D/DS =d/dt, xA = (t, 0, 0, 0, 0)
and uA = (1, 0, . . . , 0). We are left with

d2ξĀ

dt2
=RĀ00B̄ξB̄ (Ā= 1, 2, 3, 4). (10)

At this point A1 recalls that according to classical mechan-
ics both he and A2 move in a stationary gravitational field:
r̈A1 =F(rA1) and r̈A2 =F(rA2). Setting ξ

B = rBA2 − rBA1
gives

d2ξĀ

dt2
= F Ā(rA+ ξ)−F Ā(rA)�
F Ā,B̄ξ

B̄ =−Φ,Ā
,B̄
ξB̄ , (11)
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where Φ is the gravitational potential in the bulk space.
Comparing eqs. (10) and (11) gives

RĀ00B̄ =−Φ,Ā,B̄ . (12)

Now, using this equation and recalling eqs. (3) and (4) we
find

Rµ̄00µ̄+K00K −K0µ̄Kµ̄0−K,5

−Kµ̄ν̄K ν̄
µ̄ =−Φ,Ā,Ā (µ̄= 1, 2, 3).

(13)

The classical field equations in the bulk space is

Φ,ĀĀ =−Λ+(−σ+ k25ρ)δ(x5), (14)

where according to the spirit of brane models, we have
assumed existence of the bulk cosmological constant Λ,
tension of the brane σ and the matter density ρ. Conse-
quently, we obtain

Rµ̄00µ̄+K00K −K0µ̄Kµ̄0−K,5−Kµ̄ν̄K ν̄
µ̄ =

−Λ+(−σ+ k25ρ)δ(x4). (15)

Integration along normal direction gives the Newtonian
limit of the Israel junction condition as

[K] =−k25ρ+σ, (16)

where [X] := limx4→0+X − limx4→0−X. Also, if we impose
the Z2 symmetry then we obtain

K+ =
1

2
(k25ρ−σ), (17)

which is the Newtonian version of Israel junction condition
obtained in [15]. Now, we obtain the GD equation in the
RS brane world scenario. In the RS scenario, the 5D bulk
space is described by the metric [7,16]

dS2 = e−2k|y|ηµνdxµdxν +dy2, (18)

where y= rφ signifies the extra spacelike dimension with
compactification radius r, k=

√−Λ/12M3 and Λ is the
bulk cosmological constant and M is fundamental 5D
Planck scale. The factor e−2k|y| is called warp factor and
the geometry of the extra dimension is orbifolded by
S1/Z2. In the RSI scenario it can be shown that even if
Higgs or any other mass parameter in the 5D Lagrangian is
of the order of Planck scale, m0 � 1016 TeV, on the visible
brane, it gets warped by a factor of the form

m=m0e
−krπ. (19)

Thus by assuming kr= 11.84, one gets m� 1TeV. Using
RSI metric (18) we obtain

Kµν = k
|y|
y
e−2k|y|ηµν . (20)

The constant slices at y= 0 and y= rπ are known as
the hidden and visible branes respectively, where the
observable universe is identified with the latter. Therefore,
the GD equation (2) on the visible brane becomes

D2ξµ

Dτ2
= ξ̈µ = k2e−2πkr(ηαβηµγ − ηαγηµβ)uαuβξγ , (21)

where a dot denotes derivative with respect to the brane
proper time. On the other hand, solving the geodesic
equation (1) on this brane model gives the constant
4-velocity of test particles as uµ = const, which shows that
the initially parallel geodesics will always remain parallel
as a property of 4D Minkowski spacetime. The solution of
equation (21) for massive test particles is

ξµ = fµeike
−πkrτ , (22)

where fµ is the integration constant. Equation (22) implies
that the distance between two geodesics oscillate contrary
to the geodesic equation. The consistency of this solu-
tion with geodesic equation then impose the following
restriction

cke−πkrτ = nπ, n= 0, 1, 2, . . . , (23)

where c is the speed of light which is not considered, here,
to be unity. Also it is well known that

∫
pµdx

µ =

∫
muµdx

µ =

∫
m

(
ds

dτ

)2
dτ =mc2τ, (24)

where pµ is the induced 4-momentum of test particle and
m is the rest mass. Comparing eqs. (23) and (24) gives∫

pµdx
µ = nπ

mceπkr

k
. (25)

Replacing m from eq. (19) with the above equation, and
setting k∼ 1/lPl, eq. (25) reduces to∫

pµdx
µ = nh, (26)

which is similar to the old quantum theory quantization
condition but is less stringent, for the old quantum condi-
tions involve the integration being taken for a closed curve.
We also note that condition (26) involves integration
overtime component as well. On the other hand, eq. (23)
leads to

τ = n
h

mc2
, (27)

indicating that the proper time of test particle is
made up of integral multiples of a fundamental Compton-
type unit of length h/mc. This result suggests that the
world-line of test particle is to be considered as have
made up of such units of length, nothing smaller being
observable directly or indirectly in experiments. Note
that according to [17] it could be concluded from (27)
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that the smallest interval of time and distance are
given by

δt=
h

mc2
1√
1−β2 ,

δl=
h

mc

β√
1−β2 ,

(28)

where β = v
c
and the following uncertainty relations:

∆pµ∆xµ ∼ 2h

n− 1 . (29)

Note that the last relations in (28) are dependent upon
the velocity of test particle. For velocities approaching the
velocity of light they become very large which means that
it is impossible to measure intervals of time and length in
association with such rapidly moving particles. Hence it
seems that the deduction from the existence of a funda-
mental proper time is that any accurate measurements
on a particle moving with such velocity would be impos-
sible. Also in eq. (29) the worst case is for n= 1, but
this has no practical significance for it corresponds to
an observation of one fundamental unit of length which
is recorded as corresponding to zero proper time. In this
uncertainty relation for a large value of n, the right-hand
side of (29) vanishes, i.e. this equation naturally contains
classical limit. Since the minimum length and time inter-
vals that can be measured are given by (28) then the maxi-
mum uncertainly on 3-momentum and energy becomes

δp∼ 2mc
n− 1

√
1−β2
β

,

δE ∼ 2mc
2

n− 1
√
1−β2.

(30)

The conclusion is that the above uncertainties vanish when
the velocity of test particles reach the velocity of light,
while the corresponding uncertainty on time and length
tends to infinity, but their product remains finite. we
have obtained the above uncertainty relations for massive
test particles. Note that the existence of minimum spatial
and causal structures will also appear where seeking for
theories of quantum gravity such as the loop quantum
gravity [18] or string theory [19]. The modification of
special relativity in which a minimum length, which may
be the Planck length, joins the speed of light as an
invariant is done in ref. [20]. We now discuss the light
quanta or massless particles. In this case we have uµu

µ = 0
and therefore eq. (21) becomes

D2ξ

Dτ2
=−k2e−2πkruγuµξγ . (31)

If we assume a solution like ξµ = fµ(τ), then by inserting
into the above equation and by considering null condition
for 4-velocity we obtain d2fµ/dτ2 = 0 and consequently

ξµ =Aµτ +Bµ, (32)

where Aµ and Bµ are constants of integration. This result
shows that the extension of the massive test particle
case to the photons is not correct. The above solution
shows classically propagating massless particles along or
perpendicular propagating photons. Note that the case
of massless particles can be driven in this approach and
the Wesson suggestions [4] cannot lead us to this result.
In fact the different behavior of photons proceeds from
the confinement of gauge fields on the brane. Also as
we know, the concepts of time in general relativity and
quantum theory differ intensely from each other. Time
in quantum theory is an external parameter, whereas in
general relativity time is a dynamical one. Consequently,
a consistent theory of quantum gravity should exhibit a
new concept of time. In general relativity spacetime is
dynamical and therefore there is no absolute time. Space-
time influences material clocks in order to allow them
to show proper time. The clocks, in turn, react to the
metric and change the geometry [21]. In this sense, the
metric itself is a clock. A quantization of the metric can
thus be interpreted as a quantization of the concept of
time. In this paper we showed that the consistency of
geodesic and geodesic deviation equations on the RS brane
dictates the quantization of proper time or clock rate.
Note that this quantity cannot be dealt with as oper-
ators in ordinary quantum theories. The advantage of
this model is that it makes general relativity compatible
with de Broglie ideas, allows a geometric interpreta-
tion of de Broglie waves without any generalization of
Riemannian spacetime. Along this direction, the problem
needs to be more accurately surveyed.
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