
                          

Delayed response of a fermion pair condensate to
a modulation of the interaction strength
To cite this article: J. Plata 2009 EPL 87 50001

 

View the article online for updates and enhancements.

You may also like
Intermode-coupling modulation in the
fermion-boson model: heating effects in
the Bardeen–Cooper–Schrieffer regime
J Plata

-

Entangled multi-knot lattice model of
anyon current
Tieyan Si and  

-

Horndeski fermion–boson stars
Armando A Roque and L Arturo Ureña-
López

-

This content was downloaded from IP address 18.118.150.80 on 26/04/2024 at 12:22

https://doi.org/10.1209/0295-5075/87/50001
https://iopscience.iop.org/article/10.1088/0953-4075/48/13/135301
https://iopscience.iop.org/article/10.1088/0953-4075/48/13/135301
https://iopscience.iop.org/article/10.1088/0953-4075/48/13/135301
https://iopscience.iop.org/article/10.1088/1674-1056/28/4/040501
https://iopscience.iop.org/article/10.1088/1674-1056/28/4/040501
https://iopscience.iop.org/article/10.1088/1361-6382/ac4614


September 2009

EPL, 87 (2009) 50001 www.epljournal.org

doi: 10.1209/0295-5075/87/50001

Delayed response of a fermion pair condensate to a modulation
of the interaction strength

J. Plata
(a)

Departamento de F́ısica Fundamental II, Universidad de La Laguna - La Laguna E-38204, Tenerife, Spain, EU

received 22 January 2009; accepted in final form 19 August 2009
published online 18 September 2009

PACS 05.30.Fk – Fermion systems and electron gas
PACS 03.75.Ss – Degenerate Fermi gases

Abstract – The effect of a sinusoidal modulation of the interaction strength on a fermion pair
condensate is analytically studied. The system is described by a generalization of the coupled
fermion-boson model that incorporates a time-dependent intermode coupling induced via a
magnetic Feshbach resonance. Nontrivial effects are shown to emerge depending on the relative
magnitude of the modulation period and the relaxation time of the condensate. Specifically, a
nonadiabatic modulation drives the system out of thermal equilibrium: the external field induces a
variation of the quasiparticle energies, and, in turn, a disequilibrium of the associated populations.
The subsequent relaxation process is studied and an analytical description of the gap dynamics
is obtained. Recent experimental findings are explained: the delay observed in the response to
the applied field is understood as a temperature effect linked to the condensate relaxation time.

Copyright c© EPLA, 2009

The study of ultracold atomic gases has led to a remark-
able series of experimental realizations of fundamental
effects [1]. Essential to many of these achievements has
been the control of the interaction strength via a Fesh-
bach resonance (FR), which has allowed the emergence of
these systems as a practical testing ground for quantum-
statistical and many-body physics. Specially relevant has
been the realization, with a two-component Fermi gas of
atoms, of the crossover from a molecular Bose-Einstein
condensate (BEC) to a Bardeen-Cooper-Schrieffer (BCS)
superfluid of loosely bound atom pairs [2–11]. By apply-
ing a magnetic FR, the interaction is led to change from
repulsive in the BEC phase to attractive in the BCS side.
Whereas two-body physics supports a bound molecular
state in the BEC side, the formation of pairs in the BCS
regime occurs only due to many-body effects. Significant
advances have been made in the understanding of differ-
ent aspects of this transition. In particular, the role of
thermal fluctuations has been extensively analyzed [12].
Despite those advances, further work on the characteriza-
tion of nonequilibrium aspects of the crossover is required.
Indeed, the extension of the experiments on scattering
length variations to unexplored time-dependent regimes
and the setup of an expanded theoretical framework
where the emergent effects can be understood are current
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challenges. Here, we aim at explaining recent experimental
results on the nontrivial dynamics resulting from a sinu-
soidal modulation of the interaction strength [13]. This
will require a precise characterization of the different time
scales, in particular, of the relaxation time of the conden-
sate. The interest of the study is not restricted to the field
of ultracold atomic gases. In fact, the expansion of the BCS
model proposed in our approach can have broad applica-
bility: the effect of a disequilibrium population on the gap
dynamics, which is the central issue in the analysis, is rele-
vant to topics ranging from nonequilibrium superconduc-
tivity [14,15] to quench dynamics in superfluid 3He [16].
As starting point we take the experiments reported in

ref. [13]. In them, the interaction strength of a gas of
ultracold 6Li atoms in the BCS regime was sinusoidally
modulated through a magnetic FR. (The (broad) FR
at 834G between the two lowest hyperfine states was
used.) The system response, which consisted in a damped
oscillation of the condensate fraction with the modulation
frequency, was found to be delayed with respect to the
applied field. The delay showed no appreciable changes
at different cycles of the external field; moreover, it
presented the same scale for widely different frequencies.
Additionally, the damping time was observed to be much
longer than the driving period. In a preliminary analysis,
the deferred response was conjectured to be rooted in the
finite relaxation time of the condensate; furthermore, the
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decay of the oscillation amplitude was linked to heating
resulting from the nonadiabaticity (on the gap time scale)
of the process. (In the present paper, “adiabatic” will
also be applied to a modulation much slower than the
condensate relaxation.) To evaluate those conjectures,
the measured characteristic times were compared with
related theoretical predictions. However, that analysis
was not conclusive about the origin of the recorded
behavior because of the limitations of the available models,
specially, of the lack of an appropriate description of
finite-temperature effects. Our objective is to provide a
theoretical framework where the observed features can be
understood, and, in particular, the previous conjectures
can be assessed. To this end, we concentrate on conditions
which allow an analytical description of the dynamics,
and, consequently, a clear identification of the dominant
mechanisms.
We consider a gas of ultracold Fermi atoms with two

hyperfine states coupled to a molecular two-particle
state via a magnetic FR. Our methodology to deal
with magnetic-field modulations combines three main
elements. First, the standard framework, namely, the
coupled fermion-boson model [17–20], is expanded by
incorporating a time-dependent intermode coupling.
Second, a perturbative scheme, valid for a sufficiently
small modulation amplitude, is introduced in the
Hartree-Fock-Bogoliubov (HFB) description. In this
approach, finite-temperature effects are tackled and the
out-of-equilibrium situation induced by the modulation
is characterized. Finally, a method for describing the
evolution of the quasiparticle populations, and, subse-
quently, the gap dynamics is presented. Accordingly, we
start from the unmodulated system: the grand-canonical
Hamiltonian reads

H −µN =
∑
k,σ

εka
†
k,σak,σ +Vint

×
∑
q,k,k′

a†q
2+k,↑a

†
q
2−k,↓a

q
2−k′,↓aq2+k′,↑

+
∑
q

(
εmq + �ν0

)
b†qbq

+g
∑
q,k

(
bqa

†
q
2+k,↑a

†
q
2−k,↓+h.c.

)
, (1)

where µ is the chemical potential, N is the total number of
bare Fermi atoms, a†k,σ (ak,σ) denotes a fermionic creation
(annihilation) operator of an atom with momentum k
and spin σ, (σ ∈ {↑, ↓}), and b†q (bq) is a bosonic opera-
tor that creates (destroys) a molecule with momentum q.
The populations corresponding to the two hyperfine states
are assumed to be equal. The free dispersion relations
for fermions and bosons are εk = �

2k2/2m−µ and εmq =
�
2q2/4m− 2µ, respectively. The binary attractive inter-
action potential between fermions is characterized by
Vint(<0). Additionally, g represents the FR coupling
between the closed- and the open-channel states, ν0 being

the detuning of the boson resonance state from the colli-
sion continuum.
Initially, the system is at equilibrium at a finite temper-

ature T . In that situation, a sinusoidal modulation of the
detuning from the FR is applied. Correspondingly, ν0 is
replaced by ν(t) = ν0+A sinωpt. It is assumed that Vint,
which characterizes the attractive pairing interaction
resulting from nonresonant processes, is not affected by
the applied detuning of the FR. Through the unitary

transformation U(t) = e
i Aωp

cosωpt
∑
q b
†
qbq , the Hamiltonian

is transformed into H ′ =U†HU − i�U†U̇ ; consequently,
eq. (1), (with ν0 replaced by ν(t)), is rewritten as

H ′−µ =
∑
k,σ

εka
†
k,σak,σ +Vint

×
∑
q,k,k′

a†q
2+k,↑a

†
q
2−k,↓a

q
2−k′,↓aq2+k′,↑

+
∑
q

(εmq + �ν0)b
†
qbq

+


g∑

q,k

e
i Aωp

cosωptbqa
†
q
2+k,↑a

†
q
2−k,↓+h.c.


.
(2)

Our procedure to analyze the dynamics starts, like the
standard HFB approach [18,20], with the introduction of

three mean fields: n≡∑k〈a†k,σak,σ〉 for the spin density,
∆≡ |Vint|

∑
k〈a−k,↓ak,↑〉 for the pairing field, and φm ≡

〈bq=0〉 for the boson field. (We take q= 0 as we focus
on the condensed molecular field.) Next, a perturba-
tive scheme is set up as follows. From eq. (2), it is
apparent that the effect of the magnetic modulation
can be understood as a time variation of the inter-
mode coupling strength: we can work with the effec-

tive strength geff ≡ gei
A
ωp
cosωpt = g+ δg(t), where δg(t)

stands for the modulation-induced increment. (Note that
the time dependence of geff prevents the effective one-
channel reduction applicable, for a broad FR, to the
undriven coupled fermion-boson model.) Furthermore,

from the expansion e
i Aωp

cosωpt =
∑∞
l=−∞ i

lJl(A/ωp)e
ilωpt,

and taking into account the properties of the Bessel
functions, it follows that, for A/ωp� 1, we can make
the approximation δg� i2gJ1(A/ωp) cosωpt, the magni-
tude of δg being much smaller than that of g. (Higher-
order terms will be discussed later on.) In turn, the
previously defined mean fields can be expressed as n=
n0+ δn, ∆=∆0+ δ∆, and φm = φm,0+ δφm, where n0,
∆0, and φm,0 are the respective values in the absence of
the magnetic variation, and, δn, δ∆, and δφm are the
corresponding modulation-induced increments. To first
order, the complete Hamiltonian can be split as H ′−
µN �H0+Hper. The zero-order term, which describes the
unmodulated system, is given by H0 =

∑
k,σ Vka

†
k,σak,σ −∑

k(∆̃0a
†
k,↑a

†
−k,↓+h.c.) and corresponds to an effective

BCS model with mode energy Vk ≡ εk−µ+Vintn0 and
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gap ∆̃0 ≡∆0− gφm,0. The first-order correction reads
Hper =−δ∆̃(t)

∑
k a
†
k,↑a

†
−k,↓+h.c., where δ∆̃(t) = δ∆−

gδφm− δgφm,0 is the increment of the generalized order
parameter ∆̃≡∆− gφm. (We have neglected the variation
in the atomic density, i.e., we have taken δn� 0, which is
justified for a broad FR [21]. The generalization required
to deal with a narrow FR is straightforward.) To complete
the mean-field description, we must add the equation for

the evolution of the boson mode, namely, i�
d(φm,0+δφm)

dt =
(ν0− 2µ)(φm,0+ δφm)+ geff

|Vint| (∆0+ δ∆), which, through
the application of our perturbative approach and taking
into account that the equilibrium molecular field is given
by φm,0 =

g∆0
|Vint|(2µ−ν0) , is converted into

i�
dδφm
dt

= (ν0− 2µ)δφm+ g

|Vint|δ∆+
δg

|Vint|∆0. (3)

Here, the presence of the driving term δg
|Vint|∆0 points to

the oscillation of δφm with frequency ωp.
H0 is standardly diagonalized through a Bogoliubov

transformation (BT) characterized by the fermionic opera-

tors ck,↑ = cos θkak,↑− sin θka†−k,↓ and c†−k,↓ = sin θkak,↑+
cos θka

†
−k,↓, where θk is defined by tan(2θk) = |∆̃0|/Vk

[18,20]. With this BT, H0 is cast into H0 =
∑
kEk,0×

(c†k,↑ck,↑+ c
†
k,↓ck,↓)+ constant. Importantly, c

†
k,↑ (ck,↑)

corresponds to the creation (annihilation) operator
of a quasi-particle excitation with momentum k and
spin ↑ from the BCS state, which acts as an effective
vacuum state. The associated excitation energies are

Ek,0 =
√
V 2k +∆̃

2
0. The excitation gap ∆̃0 combines

the mean field ∆0, obtained from the BCS equation

∆0 =
|Vint|
2

∑
k(2fk − 1) sin 2θk, with the equilibrium

molecular field φm,0, which results from the equation for
the boson mode in the absence of driving. As thermal
equilibrium is assumed for the system before the applica-
tion of the magnetic modulation, the populations of the
quasiparticle states {fk} are initially given by the Fermi
distribution function feqk,0 = 1/(1+ e

Ek,0/kBT ).
Through the previously defined BT, the perturbation

Hamiltonian is converted into

Hper =
∑
k

δEk(t)
(
c†k,↑ck,↑+ c

†
k,↓ck,↓

)

+
(
Gk(t)c

†
k,↑c

†
−k,↓+h.c.

)
, (4)

where δEk(t)≡ 12δ∆̃(t) sin 2θk+c.c., and Gk(t)≡−δ∆̃(t)×
cos2 θk + δ∆̃

∗(t) sin2 θk. From the form of Hper, a first
picture of the dynamical implications of the field modula-
tion can be drawn. The (time-dependent) diagonal terms
lead to a time variation of the quasiparticle energies,
which become Ek(t) =Ek,0+ δEk(t). The non-diagonal
terms represent modulation-induced interactions between
the vacuum state and a doubly-excited state. Importantly,
these coupling terms, which oscillate with the external

frequency ωp, are relevant only when they can induce an
effective resonance between the BCS state and the two-
excitation configuration, i.e., only when ωp � 2∆̃0, (�= 1).
Here, in order to isolate the mechanisms responsible for
the delayed response, we concentrate first on the regime
defined by ωp < 2∆̃0. In this frequency range, the interac-
tion terms can be discarded, and the perturbation Hamil-
tonian can be approximated as Hper =

∑
k δEk(c

†
k,↑ck,↑+

c†k,↓ck,↓). Hence, the quasiparticle states of the unmod-
ulated system still provide a diagonal representation of
the driven Hamiltonian. The appearance of heating effects
outside this regime will be discussed later on.
Now we turn to incorporate finite-temperature effects in

the above framework. The modulation drives the system
out of equilibrium as the initial populations, i.e., the
thermal values associated with the unmodulated ener-
gies, do not correspond to the Fermi distribution feqk (t) =
1/(1+ eEk(t)/kBT ) for the actual (time-varying) energies.
The description of the effect of this quasi-particle dise-
quilibrium on the gap dynamics requires a self-consistent
approach since the energies and the gap are interde-
pendent. Indeed, as shown by the expression Ek(t) =

E
(0)
k +

(
∆̃0
2Ek,0

δ∆̃(t)+ c.c.
)
, the quasi-particle energies are

affected by the gap evolution and by the molecular-field
variation; in turn, the {Ek(t)} enter the general gap equa-
tion [18,20],

∆(t) =
|Vint|
2

∑
k

[2fk(t)− 1] sin 2θk, (5)

via the (changing) associated populations {fk(t)}. We will
see that it is precisely the evolution of the populations,
more specifically, their relaxation towards equilibrium,
that gives the keys to understanding the experimental
results. An important aspect of this problem can be
understood by now: a finite relaxation time τf of the {fk}
is necessary for the appearance of the gap delay. In fact, for
a sudden relaxation, the populations follow adiabatically
(on the relaxation time scale) the equilibrium values
{feqk (t)} associated with the time-dependent energies. The
evolution corresponds then to a sequence of equilibrium
states where time enters as a parameter, the associated
gap dynamics being “trivial”: no delay between the gap
evolution and the external field emerges. Therefore, to
reproduce the delayed response, we must go beyond that
adiabatic regime. Accordingly, we present a self-contained
derivation of the dynamics with no constraints on time
scales. The evolution of the populations is assumed to be
governed by the equation [14]

dfk
dt
= − 1

τf
[fk(t)− feqk (t)] , (6)

where 1/τf represents the effective thermalization rate.
The relaxation mechanism can be conjectured to be rooted
in collisions between excited particles. Here, we do not go
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into details of the dependence of τf on the system char-
acteristics; instead, as we focus on general aspects of the
role of the population thermalization in the condensate
relaxation, we consider a generic τf . Here, a comment on
the stability of the temperature is in order. One must
take into account that the standard trapping conditions
allow assuming the stability of the temperature for the
considered small variations of the scattering length. In this
sense, we recall that a grand-canonical description, which
is routinely applied in this context as it can incorporate
the possible exchange of particles between the condensate
fraction and the thermal cloud, implies that a fixed tem-
perature can be reasonably assumed. Also, it is worth
stressing that a parallel treatment of the fluctuations
of the condensate field would be necessary to formally
complete our description. However, it is shown that, in
our perturbative regime, the non-condensate fraction
has a second-order effect on the gap dynamics. (For a
systematic treatment of different aspects of the role of
fluctuations, see ref. [12].)
Equation (6) is exactly solved to give fk(t) = f

eq
k (t)−∫ t

−∞ e
−(t−t′)/τf df

eq
k

dt (t
′)dt′. Next, this expression for the

populations is introduced into eq. (5) to give the following
integral-differential equation for the order parameter:

∆0+ δ∆(t) =
|Vint|
2

∑
k

[
2

(
feqk (t)

−
∫ t
−∞
e−(t−t

′)/τf df
eq
k

dt
(t′)dt′

)
− 1
]
sin 2θk.

(7)

Here, one must take into account that feqk (t) contains

δ∆(t) and δφm, and
dfeqk
dt contains

˙δ∆ and ˙δφm. Hence,
we have obtained a description of the gap evolution, albeit
in implicit form. Given the complexity of this picture, the
problem of identifying the origin of the deferred response,
reduced at this point of the study to that of uncover-
ing the connection between the delay time and τf , is
still nontrivial. However, it simplifies considerably in the
following regime, where an explicit characterization of the
gap evolution is feasible. Specifically, forEk ∼∆� T ≈ Tc,
(kB = 1), where Tc is the temperature for the BCS tran-
sition, we can make the approximations feqk (t)� feqk,0+
dfeqk
dEk
δEk(t) and

dfeqk
dEk
�− 1

4Tc
. Then, with the expression for

the unperturbed gap ∆0 =
|Vint|
2

∑
k[2f

eq
k,0− 1] sin 2θk and

the approximation
dfeqk
dt �− 1

4Tc
dEk
dt =− 1

4Tc
sin 2θk( ˙δ∆−

g ˙δφm), eq. (7) is cast into

δ∆ = −|Vint|
8Tc

∑
k

sin2 2θk

×
[
(δ∆− gδφm)−

∫ t
−∞
e−(t−t

′)/τf ( ˙δ∆− g ˙δφm)dt′
]
.

(8)

Now, following a standard procedure, this integral-
differential equation is converted into the differential
equation

dδ∆

dt
=−1−χ

τf
δ∆− χ

τf
gδφm, (9)

where χ≡ |Vint|2π2
1
4Tc

∫K
0
sin2 2θkk

2dk encapsulates the
overall effect of the quasi-particle states on the gap
response. (K is the upper limit of the momentum summa-
tion required by the standard renormalization procedure.)

In the considered regime, χ� kF |a|2 ∆0
Tc
� 1 [22], where

kF is the Fermi wave number and a is the background
scattering length. Equation (9) along with eq. (3) for the
molecular field constitute a closed set of equations for
the system evolution. From them, it is apparent that δ∆
is determined by the combination of effective driving,
coming from the term χ

τf
gδφm, and damping with rate

1−χ
τf
. As the driving is continuously taking the system out

of equilibrium, the relaxation mechanism is permanently
activated. The combined effect of both mechanisms can
be expected to produce a nondirect following to the
external field. Approximate analytical solutions confirm
these predictions: the gap evolution is given by

∆(t)

∆0
= 1 −C[e−t/τR sinϕ+sin(ωpt−ϕ)], (10)

where C = 2χ g2

|Vint|
J1(A/ωp)

ωp
√
1+(ωpτf )2

(> 0) determines the

amplitude of the induced oscillations, ϕ= arctan(ωpτf )
is a phase shift with respect to the applied magnetic
field, and τR =

τf
1−χ appears as the condensate relaxation

time. (The meaning of τR becomes evident in a simplified
scenario: for the system with no external driving, a
sudden perturbation of the gap is shown to relax to equi-
librium with characteristic time τR.) In the considered
regime, namely, near the critical temperature and for a
perturbative gap variation, it is found that τR � τf . The
correspondence of these results with the experimental
findings is summarized in the following points.
i) The system response contains a transitory decay

with characteristic time τR, and, as observed in the
experiments, a secular oscillatory behavior with ωp. The
amplitude, which combines in a nontrivial way para-
meters of the external field and characteristics of the
unperturbed system, reflects the complex character of
the driving mechanism. The following to the external
field is not instantaneous: there is a delay time asso-
ciated with the phase shift ϕ and given by τD =

ϕ
ωp
=

τR
[
1+O ((ωpτR)2)]. Hence, as conjectured in ref. [13], τD

approximately corresponds to the condensate relaxation
time. The delay presents no changes at different cycles
of the external field. Furthermore, the small magnitude of
the correction O ((ωpτR)2) for the conditions of the exper-
iments explains the detected invariance of the delay scale
with the modulation frequency. As reflected by the minus
sign before C, there is an extra phase shift π between
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the gap oscillation and the driving field. This corresponds
exactly to the results presented in figs. 2 and 4 in ref. [13],
where an inversion of the magnetic-field axis was intro-
duced to facilitate the observation of the delay.
ii) The connection between the different time scales is

uncovered. Since τR gives the time for the condensate to
reach the thermal equilibrium, it is directly related to
the thermalization rate of the populations. Notice that
τR can significantly differ from τf outside the considered
regime with χ� 1. This can be understood taking into
account the intricate interdependence of the gap and
the populations, which implies, in general, a complex
nonlinear contribution of the populations to the gap
relaxation [14].
iii) The mechanism responsible for the deferred response

is rooted in the finite reaction time of the gas to a vari-
ation in the quasiparticle energies. (Note that the adia-
batic limit corresponding to a sudden relaxation, i.e., to
τf → 0, is consistently recovered in eq. (10).) Moreover, as
conjectured in a preliminary analysis, the observed delay
is a temperature effect. At zero temperature, there is no
initial population of the excited states; furthermore, as
the modulation in the assumed regime does not induce
a transfer from the fundamental state, the excited states
are never populated. Hence, at T = 0, there is no popu-
lation relaxation, and, consequently, no delay in the gap
evolution [23].
iv) It is worth discussing the effects that can be expected

outside the considered regime of nonexciting frequencies
(ωp < 2∆̃0) and perturbative amplitudes. First, for

ωp � 2∆̃0, the magnetic field can induce an effective
resonance between the vacuum state and a doubly-excited
state. As a consequence, the interaction between those
states, represented by the non-diagonal terms in eq. (4),
becomes important, and significant heating can result.
(See refs. [24] and [25] for related work.) Second, as the
amplitude is increased, the contribution of the terms of
order higher than one in the expansion of the exponential
in eq. (2) grows. Given that the frequency of each term
is a multiple of ωp, a resonance between the ground
state and the excitations can eventually be reached for
increasing order, which, again, can lead to an irreversible
loss of population.
At this point some aspects of our approach must be

recalled. Importantly, a perturbative regime has been
considered: the system, which is initially in the BCS side,
is assumed to be inside that regime during the whole
modulation process. Hence, the unitary limit of large
scattering length is never reached and neither is attained
the BEC side. Our approach, directly set up from the
fundamental theory, has some similarities with former
studies in superconductivity where the effect of a popu-
lation disequilibrium on the gap dynamics was tackled
by introducing an operative changing temperature in the
static Ginzburg-Landau (GL) equation [14,15]. The effec-
tive time-dependent GL equation thus obtained was shown
to satisfactorily explain the relaxation process. That

description, as ours, is basically built from the incorpora-
tion of formal solutions for the evolving populations into
the gap equation. In the uniform case and in the pertur-
bative regime for the gap variation, the analogy with our
self-contained approach is complete. Incidentally, we stress
that the success of our uniform description in reproducing
the experimental results, which, in fact, were obtained
for a harmonic confinement, reflects the robustness of
the identified physical mechanisms against spatial non-
uniformities. The generalization through a local-density
approximation is straightforward.
In summary, we have presented an analytical explana-

tion for the delayed response of a Fermi condensate to a
modulation of the interaction strength. Although a more
quantitative comparison with the experiments of ref. [13]
requires additional information on the temperature and
the amplitude of the applied field, the study uncovers
fundamental aspects of the out-of-equilibrium dynamics
of the condensate, in particular, the nontrivial role of the
relaxation in a time regime of experimental and theo-
retical interest. Our analysis can have direct practical
implications. One of the main motivations for the exper-
iments was the validation of the detection schemes based
on a projection of the fermion pair condensate into a
molecular condensate. Those schemes are applicable only
if the response time of the condensate to variations in
the interaction strength is much larger than the sweep
time. The relevance of the nonzero-temperature charac-
ter of the delay to the projection techniques is clear: an
out-of-equilibrium situation and the subsequent relaxation
process of the condensate can be induced not only by
changing the temperature but also by manipulating the
system with external fields. Our picture provides the theo-
retical basis for the design of methods for measuring the
different time scales, and, consequently, for defining the
appropriate ranges for the projection. Furthermore, the
identification of the dominant mechanisms opens the way
to develop variations of the basic arrangement as prob-
ing tools for different aspects of the dynamics. Given the
generality of the applied model, the applicability of the
study in parallel contexts can be expected.
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