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Abstract – In this paper, based on the formulation of an O(3) non-linear σ model, we study
the two-dimensional π-flux Hubbard model at half-filling. A quantum non-magnetic insulator is
explored near the metal-insulator transition that may be a possible candidate of the spin liquid
state. Such quantum non-magnetic insulator on square lattice is not induced by frustrations.
Instead, it originates from quantum spin fluctuations with relatively small effective spin moments.
In the strong-coupling limit, our results of the spin velocity and spin order parameter agree with
results obtained from earlier calculations.
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People have been seeking for quantum spin liquid
states in spin models with predominantly antiferromag-
netic short-ranged interactions for over two decades [1].
For example, various approaches show that quantum spin
liquids may exist in the two-dimensional (2D) S = 1/2
J1-J2 model or Heisenberg model on Kagomé lattice.
In these models, the quantum spin liquids are accessed
(in principle) by appropriate frustrating interactions. In
particular, such type of spin liquid states can be described
by the Hubbard model formalism in the strong-coupling
limit.
Recent experiments on the triangular lattice show that

the spin liquid ground state may be realized in the organic
material κ-(BEDT-TTF)2CU2(CN)3 [2–4]. Motivated by
experiments, the U(1) slave-rotor theory of the Hubbard
model on a triangular lattice [5] and its SU(2) general-
ization on a honeycomb lattice were formulated [6]. It
is predicted that quantum spin liquids may lie in the
insulating side of the metal-insulator (MI) transitions.
Because the spin liquid is adjacent to the MI transitions,
people may guess it is the local charge fluctuations rather
than frustrations that disrupt spin ordering and drive the
ground state to a spin liquid. Such type of spin liquid
can be described by the Hubbard model formalism of the
intermediate coupling region.

(a)E-mail: spkou@bnu.edu.cn

Recently, it has become frequent to use ultracold atoms
as simulators of quantum many-body systems [7]. In
particular, the π-flux Hubbard model (or the Hubbard
model with φ-flux) on square lattice has been designed
with ultracold atoms in an optical lattice. An artificial
magnetic field of π-flux (or φ-flux) in an optical square
lattice is proposed to be realized by different approaches,
such as laser-assisted tunneling method [8], laser methods
by employing dark states [9] or dressing two-photon by
laser fields [10]. Without the nesting condition, the MI
transition of the π-flux Hubbard model may differ from
that of the traditional Hubbard model on a square lattice.
Thus, due to nodal fermions in the non-interacting limit,
it becomes an interesting issue to study the MI transition
of the π-flux Hubbard model. In addition, it is known that
the insulator state of the π-flux Hubbard model belongs
to a special class of antiferromagnetic (AF) ordered state
- nodal AF insulator (NAI), an AF order with relativistic
massive fermionic excitations [11]. Another issue here is
whether the nodal AF insulator is a long-range AF order
or not.
In the followings an O(3) non-linear σ model (NLσM) is

developed to investigate the properties of NAI in the π-flux
Hubbard model. Based on the NLσM, we will show that
a non-magnetic insulator (a short-range AF order) may
exist in the NAI of the 2D π-flux Hubbard model when
the spin fluctuations are considered. Even though the
π-flux Hubbard model does not directly apply to the

67002-p1



Gao-Yong Sun and Su-Peng Kou

Fig. 1: Illustrations of a π-flux lattice. There is a π-flux phase
when an atom hops aroud a plaquette (the gray rectangle),
where a is the length of the side, that is chosen to be unit.

organic material κ-(BEDT-TTF)2CU2(CN)3, it is inter-
esting to compare our results with the predictions of the
U(1) slave-rotor theory regarding this system [5].

Metal-insulator transitions of the π-flux
Hubbard model. – The Hamiltonian of the 2D π-flux
Hubbard model is

H=−
∑
〈i,j〉

(
tij ĉ

†
i ĉj +h.c.

)
+U
∑
i

n̂i↑n̂i↓−µ
∑
i

ĉ†i ĉi. (1)

Here ĉi = (ĉi↑, ĉi↓)T are defined as electronic annihilation
operators. U is the on-site Coulomb repulsion. µ is the
chemical potential and at half-filling it is U2 . 〈i, j〉 denotes
two sites on a nearest-neighbor link. n̂i↑ and n̂i↓ are the
number operators of electrons at site i with up-spin and
down-spin, respectively. There is a π-flux phase when an
atom hops around a plaquette in a π-flux lattice (see
fig. 1). So the nearest-neighbor hopping ti,j in a π-flux
lattice could be chosen as [12] ti,i+x̂ = t, ti,i+ŷ = te

±iπ2 .
Because the Hubbard model on bipartite lattices is

unstable against antiferromagnetic (AF) instability, at
half-filling, the ground state may be an insulator with AF
order (NAI). Such AF order is described by the following
mean-field result:

〈ĉ†i,σ ĉi,σ〉=
1

2

(
1+ (−1)iσM). (2)

Here M is the staggered magnetization. For the cases of
spin-up and spin-down, we have σ=+1 and σ=−1,
respectively. Then in the mean-field theory, the Hamil-
tonian of the 2D π-flux Hubbard model is obtained as

H=−
∑
〈ij〉
(ti,j ĉ

†
i ĉj +h.c.)−

∑
i

(−1)i∆ĉ†iσz ĉi, (3)

where ∆= UM2 leads to the energy gap of electrons and σz
is the Pauli matrix. After diagonalization, the spectrum of
the electrons is obtained as

Ek =±
√
|ξk|2+∆2, (4)

Fig. 2: The staggered magnetization of the π-flux Hubbard
model (solid line with circles) and that of the traditional
Hubbard model (solid line with squares) at zero temperature.
(U/t)c1 � 3.11 is the critical point of the metal-insulator (MI)
transition of the π-flux Hubbard model.

where |ξk|=
√
4t2 (cos2 kx+cos2 ky) corresponds to the

energy of free fermions. By minimizing the free energy
at temperature T in the Brillouin zone, the self-consistent
equation of (3) is reduced into

1

N

∑
k

U

2Ek
tanh

(
Ek

2kBT

)
= 1, (5)

where N is the number of particles.
It is well known that due to the nesting effect, there is

no MI transition of the traditional Hubbard model (arbi-
trary interaction will lead to a magnetic instability). The
situation is difference for the MI transition of the π-flux
Hubbard model. The MI transition of the π-flux Hubbard
model occurs at a critical value about U/t� 3.11 [12]
(see fig. 2). In the weak-coupling limit (U/t < 3.11), the
ground state is a semi-metal (SM) with nodal Fermi
points [11]. In the strong-coupling region (U/t > 3.11),
due toM �= 0, the ground state becomes an insulator with
massive fermionic excitations. By contrast, there is only
the insulating phase of the traditional Hubbard model (see
fig. 2). However, the non-zero value of M only means the
existence of effective spin moments. It does not necessar-
ily imply that the ground state of NAI is a long-range AF
order because the direction of the spins is chosen to be
fixed along the ẑ-axis in the mean-field theory. Thus one
needs to examine the stability of magnetic order against
quantum fluctuations of effective spin moments based on
a formulation by keeping the spin rotation symmetry.

Effective non-linear σ model of spin fluctuations.
– In the following parts we will focus on the NAI state
and do not consider local charge fluctuations and the
amplitude fluctuations of M that are all gapped in the
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region with M �= 0 (see footnote 1). To deal with the
spin fluctuations, we use the path-integral formulation
of electrons with spin rotation symmetry [13–17]. The
interaction term in eq. (1) can be handled by using the
SU(2) invariant Hubbard-Stratonovich decomposition in
the arbitrary on-site unit vector Ωi

n̂i↑n̂i↓ =
(
ĉ†i ĉi
)2
4

− 1
4
[Ωi · ĉ†iσĉi]2. (6)

Here σ= (σx, σy, σz) are the Pauli matrices. By replacing

the electronic operators ĉ†i and ĉj by the Grassmann
variables c∗i and cj , the effective Lagrangian of the 2D
π-flux Hubbard model at half-filling is obtained:

Leff =
∑
i

c∗i ∂τ ci−
∑
〈ij〉
(ti,jc

∗
i cj +h.c.)−∆

∑
i

c∗iΩi ·σci.

(7)
In particular, we describe the vector Ωi with Haldane’s
mapping:

Ωi = (−1)ini
√
1−L2i +Li. (8)

Here ni = (n
x
i , n

y
i , n

z
i ) is the Néel vector with n

2
i = 1 and

Li is the small transverse canting field with Li ·ni = 0
[14,18,19].
Then we rotate ni to the ẑ-axis at each site on both

sublattices by performing the following spin transforma-
tion [13–17]: ψi =Uici, U

†
i ni ·σUi = σz and U†i Li ·σUi =

li ·σ. After the spin transformation, the effective Hamil-
tonian becomes:

Heff =
∑
i

ψ∗i a0(i)ψi−
∑
〈ij〉
(ti,jψ

∗
i e
iaijψj +h.c.)

−∆
∑
i

ψ∗i
[
(−1)iσz

√
1− l2i + li ·σ

]
ψi, (9)

where the auxiliary gauge fields aij = aij,1σx+ aij,2σy and

a0(i) = a0,1(i)σx+ a0,2(i)σy are defined by eiaij =U†i Uj
and a0(i) =U

†
i ∂τUi. In terms of the mean-field result,M =

(−1)i〈ψi ∗σzψi〉, we obtain the effective Hamiltonian:
Heff �

∑
i

ψ∗i [a0(i)−∆σ · li]ψi−∆
∑
i

(−1)iψ∗i σzψi

−
∑
〈ij〉
[ti,jψ

∗
i (1+ iaij)ψj +h.c.] +∆M

∑
i

l2i
2
(10)

In this equation we have used the approximations√
1− l2i � 1− l

2
i

2 and e
iaij � 1+ iaij .

In the next step, we integrate the gapped fermion fields
and get the quadric terms of [a0(i)−∆σ · li] and aij . Then
the effective action becomes

Seff=1
2

∫ β
0

dτ
∑
i

[
−4ς(a0(i)−∆σ · li)2+4ρsa2ij+

2∆2

U
l2i

]
,

(11)

1When the mean-field value of M almost vanishes, approaching
the critical point (U/t� 3.11), due to the strong charge fluctuations
and the strong amplitude fluctuations of M , NLσM cannot be used
and our results cannot be reliable.

where the parameters ρs and ς are derived from the
following two equations2:

ρs =
1

N

∑
k

ε2

2(|ξk|2+∆2) 32
, (12)

ς =
1

N

∑
k

∆2

4(|ξk|2+∆2) 32
(13)

and the corresponding coefficient ε2 is given as

ε2 = t2[cos (2kx)
(
∆2+8t2+4t2 cos (2ky)

)
+∆2+3t2+ t2 cos (4kx)]. (14)

To learn the properties of the low-energy physics, we
study the continuum theory of the effective action in
eq. (11). In the continuum limit, we denote ni, li, iaij �
U†i Uj − 1 and a0(i) =U†i ∂τUi by n(x, y), l(x, y), U†∂xU
(or U†∂yU) and U†∂τU , respectively. From the relations
between U†∂µU and ∂µn,

a2τ = a2τ,1+ a
2
τ,2 =−

1

4
(∂τn)

2, τ = 0,

a2µ = a2µ,1+ a
2
µ,2 =

1

4
(∂µn)

2, µ= x, y, (15)

a0 · l = − i
2
(n× ∂τn) · l,

the continuum formulation of the action in eq. (11) turns
into

Seff = 1
2

∫ β
0

dτ

∫
d2r
[
ς(∂τn)

2
+ ρs (∇n)2

−4i∆ς (n× ∂τn) · l+
(
2∆2

U
− 4∆2ς

)
l2
]
, (16)

where the vector a0 is defined as (a0,1, a0,2, 0).
Finally, we integrate the transverse canting field l and

obtain the effective NLσM of the π-flux Hubbard model as

Seff = 1
2g

∫ β
0

dτ

∫
d2r

[
1

c
(∂τn)

2
+ c (∇n)2

]
(17)

with a constraint n2 = 1. The coupling constant g and spin
wave velocity c are defined as

g=
c

ρs
, (18)

c2 =
ρs

χ⊥
. (19)

Here ρs is the spin stiffness and χ
⊥ = (1

ς
− 2U)−1 is the

transverse spin susceptibility.
The numerical results of ρs and c of the π-flux Hubbard

model are illustrated in fig. 3, where one can find that
ρs = 0.03936t= 0.2460J , c= 0.226278t= 1.41424J in the

2See the detailed calculation in refs. [14] and [15].
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Fig. 3: The spin stiffness ρs and the spin wave velocity c of the
π-flux Hubbard model.

strong-coupling limit (U = 25t) match the earlier results

ρs =
J
4 , c=

√
2J (J = 4t

2

U
) that are obtained from the

Heisenberg model [20–23].
In addition, we need to determine another important

parameter: the cutoff Λ. On the one hand, the effective
NLσM is valid within the energy scale of the Mott gap,
2∆=UM . On the other hand, the lattice constant is a
natural cutoff. Thus the cutoff is defined as the following
equation: Λ=min(1, 2∆

c
) [14].

Magnetic properties of the nodal AF insulator.
– In this section we will use the effective NLσM to
study the magnetic properties of the insulator state. The
Lagrangian of NLσM with a constraint (n2 = 1) by a
Lagrange multiplier λ becomes

Leff = 1

2cg

[
(∂τn)

2+ c2(∇n)2+ iλ(1−n2)] , (20)

where iλ=m2 and m is the mass gap of the spin
fluctuations.
At finite temperature, by rescaling the field n→√Nn

and using the large-N approximation, the solution of
n0 = 〈n〉 is always zero that is consistent to the Mermin-
Wigner theorem. From eq. (20), we may get the solution
of m as

m= 2T sinh−1
[
e−

2πc
gT sinh

(
cΛ

2kBT

)]
. (21)

At zero temperature, the solutions of n0 and m of
eq. (20) are determined by the dimensionless coupling
constant α= gΛ. In particular, there exists a critical point
αc = 4π (or gc =

4π
Λ ). For the case of α< 4π, we get

solutions of n0 and m as n0 = (1− g
gc
)1/2 and m= 0.

For the case of α> 4π, we get solutions of n0 and
m as n0 = 0 and m= 4πc( 1

gc
− 1
g
). So we calculate the

dimensionless coupling constant α= gΛ of the π-flux
Hubbard model and show results in fig. 4. The quan-
tum critical point corresponding to αc = 4π turns into

Fig. 4: The dimensionless coupling constant α of the π-flux
Hubbard model (solid line with circles) and that of the tradi-
tional Hubbard model (solid line with squares). There are three
regimes, semimetal (SM), quantum disordered (QD), antiferro-
magnetic (AF), separated by two critical points (U/t)c1 � 3.11,
(U/t)c2 � 4.26, respectively. There is only the AF regime on the
traditional square lattice.

U/t� 4.26 which divides the NAI state into two phases: a
quantum disordered state (QD) in the region of 3.11<
U/t < 4.26 and a long-range AF order in the region of
U/t > 4.26. The results show a sharp contrast to those
from the traditional Hubbard model, where the dimen-
sionless coupling constant is always smaller than αc = 4π.
In the region of U/t > 4.26 (where α<αc), at low

temperature the mass gap m of spin fluctuations is
determined by

m� 2kBT exp
[
− 2πc
kBT

(
1

g
− 1
gc

)]
. (22)

Because the energy scale of the mass gapm is always much
smaller than the temperature, i.e., m	 kBT (or ωn),
quantum fluctuations become negligible in a sufficiently
long wavelength and low-energy regime (m< |cq|<kBT ).
Thus in this region one may only consider the purely static
(semiclassical) fluctuations. The effective Lagrangian of
the NLσM then becomes

L= ρ̃s

2
(∇n)2 , (23)

where ρ̃s = c(
1
g
− 1
gc
) is the renomalized spin stiffness. At

zero temperature, the mass gap vanishes (see fig. 5(a))
which means that long-range AF order appears. To
describe the long-range AF order, we introduce a spin
order parameter [24–26]

M0 =
M

2
n0 =

M

2

(
1− g

gc

)1/2
. (24)

As shown in fig. 5(b), the ground state of long-range
AF-ordered phase has a finite spin order parameter. In

67002-p4
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Fig. 5: The mass gap m of the spin fluctuations (a) and the
ordered spin moment M0 of the π-flux Hubbard model (b)
at zero temperature. There are three regimes, semimetal
(SM), quantum disordered (QD), antiferromagnetic (AF),
separated by two critical points (U/t)c1 � 3.11, (U/t)c2 � 4.26,
respectively.

addition, in the strong-coupling limit, U/t→∞, the values
naturally match the results derived from the Heisenberg
model mapped from the π-flux Hubbard model.
In the region of 3.11<U/t < 4.26 (where α>αc), there

is a finite mass gap of spin fluctuations, m= 4πc( 1
gc
− 1
g
)

at zero temperature (see fig. 5(a)). Therefore, the ground
state of the insulator in this region is not a long-range
AF order. Instead, it is a quantum disordered state
(or non-magnetic insulator state) with zero spin order
parameterM0 = 0 (see fig. 5(b)). The existence of a non-
magnetic insulator state provides an alternative candidate
for finding a spin liquid state.
Obviously, such type of quantum non-magnetic insu-

lator on bipartite lattices is induced neither by geome-
try frustrations regarded as the examples in varied spin
models nor by the local charge fluctuations with finite
energy gap. What is the physics origin of this quantum
non-magnetic state? The key point is that, due to the
special electron dispersion (the existence of nodal fermi-
ons for non-interacting case) the coupling constant g is
almost proportional to 1

M
near the MI transition (see fig. 6).

Hence the non-magnetic state originates from quantum
spin fluctuations of relatively small effective spin moments,
M → 0.
Let us compare the properties of the insulator state in

the π-flux Hubbard model and those in the traditional
Hubbard model. For the traditional Hubbard model on
the square lattice, due to the nesting effect, there is no MI
transition at finite U and the insulator state here does not
belong to NAI. In the U/t→ 0 limit, the coupling constant
g is not proportional to 1

M
(see fig. 6). Instead, g is about

g∼ 2√
π
(U
t
)1/4 that becomes smaller and turns into zero

the weak-coupling limit (see more details in ref. [14]). So

Fig. 6: Illustrations of the relations between the coupling
constant g and the staggered magnetization M of the π-flux
Hubbard model (solid line with circles) and the traditional
Hubbard model (solid line with squares in inset (b)).

the quantum fluctuations of the effective spin moments are
suppressed. Using the NLσM formulation, due to g < gc
(see fig. 4), the ground state of the Hubbard model on the
square lattice always has a long-range AF order.

Conclusion. – In this paper, to deal with the spin
fluctuations, we use the path-integral formulation of elec-
trons with spin rotation symmetry and then the effec-
tive NLσM is obtained to describe the NAI state of the
π-flux Hubbard model. We calculate the spin stiffness,
the transverse spin susceptibility, the spin wave velocity
and the coupling constant g. In the strong-coupling limit
(U/t→∞), our results of spin velocity and spin order
parameter agree with the results obtained from earlier
calculations of the traditional Hubbard model. However,
we find that the coupling constant g in the NAI state
of the π-flux Hubbard model shows different behaviors
to that in the insulator state of the traditional Hubbard
model. In particular, a quantum non-magnetic insulator
state (3.11<U/t < 4.26) is explored near the MI transition
that corresponds to the strong-coupling region of the effec-
tive NLσM, g > gc. Such type of quantum non-magnetic
insulator in bipartite lattices is driven by quantum spin
fluctuations of relatively small effective spin moments.
Such non-magnetic insulator state is different from that

proposed in the organic material κ-(BEDT-TTF)2
CU2(CN)3 by the U(1) slave-rotor theory in ref. [5].
Firstly, the non-magnetic insulator state here is a short-
range AF insulator (although we do not know its exact
properties) followed by a long range AF order with
increasing U ; however, the spin liquid state in ref. [5]
is really a U(1) spin liquid with spinon Fermi surface,
which no long-range AF order follows with increasing U .
Secondly, the local charge fluctuations play important
role in the slave-rotor theory; in contrast, the local charge
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fluctuations are irrelevant here. Therefore, our results
illustrate a new candidate for finding the spin liquid state.
An interesting issue is the nature of the non-magnetic

insulator. Is it a valence-band crystal [27], or an algebra
spin liquid state [15,28], . . . ? In addition, another issue is
whether there exists a non-magnetic insulator state of the
Hubbard model in a honeycomb lattice, of which there also
exist nodal fermions. These issues are beyond the scope of
the present work and will be left for a future study.
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