
                          

The ferromagnetic transition and domain structure
in LiHoF4

To cite this article: A. Biltmo and P. Henelius 2009 EPL 87 27007

 

View the article online for updates and enhancements.

You may also like
Spectroscopic signatures of the Mott
transition on the anisotropic triangular
lattice
Rajarshi Tiwari and Pinaki Majumdar

-

Impact of CNT medium on the interaction
between ferromagnetic nanoparticles
A. L. Danilyuk, I. V. Komissarov, A. V.
Kukharev et al.

-

The effects of non-linear electron-phonon
interactions on superconductivity and
charge-density-wave correlations
Shaozhi Li and S. Johnston

-

This content was downloaded from IP address 18.119.126.80 on 20/04/2024 at 07:14

https://doi.org/10.1209/0295-5075/87/27007
https://iopscience.iop.org/article/10.1209/0295-5075/108/27007
https://iopscience.iop.org/article/10.1209/0295-5075/108/27007
https://iopscience.iop.org/article/10.1209/0295-5075/108/27007
https://iopscience.iop.org/article/10.1209/0295-5075/117/27007
https://iopscience.iop.org/article/10.1209/0295-5075/117/27007
https://iopscience.iop.org/article/10.1209/0295-5075/109/27007
https://iopscience.iop.org/article/10.1209/0295-5075/109/27007
https://iopscience.iop.org/article/10.1209/0295-5075/109/27007


July 2009

EPL, 87 (2009) 27007 www.epljournal.org

doi: 10.1209/0295-5075/87/27007

The ferromagnetic transition and domain structure in LiHoF4

A. Biltmo and P. Henelius(a)

Department of Theoretical Physics, Royal Institute of Technology - SE-106 91 Stockholm, Sweden, EU

received 17 March 2009; accepted in final form 7 July 2009
published online 4 August 2009

PACS 75.10.Hk – Classical spin models
PACS 75.40.Mg – Numerical simulation studies
PACS 75.50.Dd – Nonmetallic ferromagnetic materials

Abstract – Using Monte Carlo simulations we verify that the rare-earth compound LiHoF4 is a
very good realization of a dipolar Ising model. With only one free parameter our calculations
for the magnetization, specific heat and inverse susceptibility match experimental data at a
quantitative level in the 0.5–3 kelvin range, including the ferromagnetic transition at 1.53 K. Using
parallel tempering methods and reaching system sizes up to 32000 dipoles with periodic boundary
conditions, we are able to give evidence of the logarithmic corrections predicted in renormalization
group theory. Due to the long range and angular dependence of the dipolar model, sample shape
and domains play a crucial role in the ordered state. We consider surface corrections to Griffiths’s
theorem, which arise in finite macroscopic samples and lead to a theory of magnetic domains. We
find a domain wall energy of 0.059 erg/cm2 and predict that the ground-state domain structure
for cylinders with a demagnetization factor N > 0 consists of thin parallel sheets of opposite
magnetization, with a width depending on the demagnetization factor.

Copyright c© EPLA, 2009

Introduction. – The use of effective theories is
one of the primary modus operandi of modern physics.
Frequently, the effective models give only a qualitatively
accurate description of the phenomena under investi-
gation, due to corrections that are omitted and free
parameters that may be hard to determine experimen-
tally. Finding experimental systems that display striking
phenomena, are accurately described by a simple model,
and have few or no free parameters, is important since it
enables detailed comparison between experiments, theory
and numerical simulations.
The rare-earth magnet LiHoxY1−xF4 displays an array

of fascinating magnetic phenomena such as quantum
phase transitions [1], spin-glass behavior [2] and persistent
coherent oscillations [3]. Yet the pure material LiHoF4 is
believed to be described by one of the most fundamental
models in condensed-matter physics: the two-state Ising
model. Materials such as the antiferromagnets DyPO4 and
Dy3Al5O12 have been shown to be accurately described
by a short-range Ising model [4]. In LiHoF4, on the other
hand, the magnetic properties are dominated by the long-
range dipolar interaction. Since the interaction strength is
set by the known g factor it is possible to determine the
effective model to high accuracy. However, the inherent

(a)E-mail: henelius@kth.se

frustration and long range of the dipolar model make
direct numerical simulations demanding. Using a parallel
tempering Monte Carlo (MC) method that is essentially
free of systematic errors (apart from finite-size effects) we
go beyond mean-field theory and explicitly demonstrate
that the experimental data for LiHoF4 is indeed in
quantitative agreement with the dipolar Ising model.

The effective model. – The magnetic properties of
LiHoF4 originate in the 4f -electrons of the Ho

3+ ions,
which sit in a tetragonal lattice with a unit cell of size
(1,1,2.077) in units of a= 5.175 Å. According to Hund’s
rules, the holmium ion has a 5I8 ground state, but the
crystal field partially lifts the 17-fold degeneracy, and the
resulting doubly degenerate ground state is separated from
the first excited state by 11K [5]. This separation of energy
levels enables a projection of the full Hamiltonian onto
the ground-state subspace [6]. The matrix elements of the
operators Jx and Jy vanish in this subspace, and the
effective model is the dipolar Ising model

H =
Jd

2

∑
i,j

r2ij − 3z2ij
r5ij

σzi σ
z
j +Je

∑
〈ij〉
σzi σ

z
j . (1)

The dipolar coupling constant is given by Jd =
(gµB/2)

2/a3 = 0.214K due to the renormalized g factor
� 13.8, which can be computed from the crystal-field
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Hamiltonian [6], or deduced from the experimental high-
temperature susceptibility [7]. The only free parameter
in the model, the weak exchange interaction, has no
fundamental physical effect on the system other than
to alter the critical temperature (Tc). We set it to
Je = 0.12K to reduce the Tc of the model from 1.91K to
the experimental value 1.53K [6,8,9].
The study of the dipolar interaction has a long and

interesting history. Demagnetization effects, whereby the
surface charge of a magnetized body causes a self-field,
are important. For ellipsoidal samples the field is given
by H=−NM, where N is the shape-dependent demag-
netization factor and M is the magnetization [10]. Due
to demagnetization effects, Luttinger and Tisza found a
ground-state energy that depends on both lattice structure
and sample shape [11]. Griffiths later gave a proof that
the free energy, without applied fields, is independent of
sample shape [12]. The apparent contradiction is explained
in terms of domain formation, allowing the magnetic
order to vary from one macroscopic part of the system
to the next. Experimentally this has been demonstrated
since measurements of the specific heat for LiHoF4 show
no apparent shape dependence [13], and needle-shaped
domains have been observed close to the transition [14].
The dipolar interaction has several properties that

complicate a numerical treatment of the model. Inherent
frustration combined with the long range makes MC
equilibration cumbersome at low temperatures, requiring
long simulation runs to reach equilibrium. To handle the
long range of the interactions we employ the method
of Ewald summation [15]. This method not only gives
improved numerical convergence due to the use of periodic
boundary conditions, but also includes a parameter which
emulates different sample shapes [16–18]. Our simulations
have been carried out using single-flip parallel tempering
MC, since cluster methods are of limited use in frustrated
systems. The MC sample is of size L3 unit cells, with four
spins per unit cell, and the linear size L ranging from 10
to 20 (4000 to 32000 spins) throughout the study. In most
figures we use about 100 temperature points resulting in
smooth curves.

Thermodynamic properties. – In order to investi-
gate the convergence to the thermodynamic limit we first
consider the effect of different sample shapes on the inter-
nal energy in fig. 1. The calculation is performed for a
long needle (with demagnetization factor N = 0) and for
a sphere (N = 4π/3). The energy for the needle converges
quickly in system size and we show the converged curve.
The energy for the sphere coincides with the energy for
the needle above Tc, but shows large finite-size corrections
below Tc. The needle orders ferromagnetically, and accord-
ing to Griffiths’s theorem the infinite spherical sample
must have the same energy. If the spherical sample forms
ferromagnetic domains that cancel the internal magnetic
field, then the two energies will be equal. The formation
of domains can be seen directly in the simulations of the
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Fig. 1: (Colour on-line) The internal energy for spherical (N =
4π/3, black lines) and needle-shaped (N = 0, dashed red line)
boundary conditions. For the spherical boundary the MC cell
is of size L3 unit cells with L= 4, 6, 8, 10, 12 and 14 from top
to bottom. The inset shows the difference of the two energies
as a function of system size at T = 0.5K.
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Fig. 2: (Colour on-line) Typical spin configuration for spherical
boundary conditions at T = 0.5Tc. Open and filled symbols
indicate different Ising spin states and two domains with
separating domain walls are clearly visible.

spherical sample, and in fig. 2 we show a typical spin
configuration at T = 0.5Tc. Note that the domain config-
uration breaks the symmetry of the Monte Carlo cell, and
the domain walls spontaneously align along the x or y
axes. In the inset of fig. 1 we see that the difference of the
two energies decreases as the inverse of the volume of the
system. Similar results were observed in a study of a dipo-
lar liquid, where the inclusion of a finite demagnetization
factor caused domain formation [19,20].
In order to verify the accuracy of our effective model for

LiHoF4 we make detailed comparisons between our calcu-
lations and existing experimental data. In fig. 3 we show
the specific-heat measurements from refs. [13,21], and our
calculations for spherical (N = 4π/3) and needle-shaped
(N = 0) samples. Again we find that the numerical results
for spherical samples show slow convergence, while the
results for zero demagnetization factor have converged,
except for close to the critical temperature where
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Fig. 3: (Colour on-line) The specific-heat capacity for spherical
(N = 4π/3; L= 12, 10 and 8 from top to bottom) and needle-
shaped boundary conditions (N = 0; L= 20 and 18 from top
to bottom), and experimental data for a spherical sample [13]
as well as an oblate sample [21,22].
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Fig. 4: (Colour on-line) Magnetization as a function of temper-
ature for system sizes L= 10, 18 and 20, as well as experimental
data [22]. Close to the critical temperature we show a fit to our
data including logarithmic corrections.

finite-size effects are still visible. In the range of
converged data the numerical results agree very well with
the experimental data.
Next, we compare the spontaneous intradomain magne-

tization measured by Griffin et al. [22] with our simulations
for zero demagnetization factor in fig. 4. The experimental
data is only determined up to a constant, and we have
normalized the experimental data to agree with our
calculations at 1.35K. The agreement is very good all the
way up to about 0.96Tc, where finite-size effects become
visible in our largest system sizes. Below we will analyze
our data more carefully and demonstrate that we can
directly observe logarithmic corrections to the mean-field
magnetization.
In addition to the magnetization and specific-heat

data there is also experimental data available for the
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Fig. 5: (Colour on-line) The inverse magnetic susceptibility 1/χ
from experiments and simulations. The three sets of curves
correspond to N = 4π/3 (spherical sample), 1.65 and 0 from
top to bottom.

susceptibility. Here we consider the inverse magnetic
susceptibility as measured by Cooke et al. [7] as a function
of different demagnetization factors. We compare our
calculations to the measurements of a spherical sample
and a long cylinder, for which the demagnetization factors
were determined to N = 4.15 and N = 1.65 [7]. In fig. 5 we
demonstrate that the agreement with experiments again is
very good for N = 4π/3 (spherical sample) and N = 1.65.
The interesting behavior of the inverse susceptibility below
Tc can be understood in terms of the domains [7]. With no
disorder the walls are free to move and arrange themselves
to cancel the internal field: Hint =H−NM= 0, resulting
in a constant susceptibility, χ=M/H= 1/N , below Tc.
We find it remarkable that the numerical simulations for
limited system sizes have converged so well, even if the
domain size is much smaller than in the real material.
Above Tc the Curie-Weiss law is followed. For theN = 1.65
sample we note that the initial slope of the experimental
data is slightly higher than the MC data, a fact that
could be due to non-stoichiometry in the material used
by Cooke et al. [7].
The upper critical dimension is three for uniaxial dipolar

interactions [23], and according to renormalization group
theory, the magnetization, susceptibility and specific heat
are predicted to have logarithmic corrections of the form
log|(T −Tc)/T0|1/3, where T0 is an effective tempera-
ture. Experimentally, logarithmic corrections have been
convincingly seen in the magnetization [22] of LiHoF4
and the specific heat of LiTbF4 [24], but not in the
susceptibility [25].
Numerical studies of the dipolar model have applied

finite-size scaling to detect the logarithmic corrections
[26,27] and in one study [26] the authors conclude that the
collapse was enhanced when logarithmic corrections were
added to the standard scaling form, but at the expense
of using different critical temperatures with and without
logarithmic corrections. Another study applies a different
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Fig. 6: (Colour on-line) Exponent a of the logarithmic correc-
tions and rmse for the optimal fit of the magnetization curve
as a function of Tc.

scaling form [27], which uses more free parameters to
include standard corrections to scaling, and also shows an
improved collapse of the data. We have applied the above
finite-size scaling to our data, and find that if we include
standard corrections to scaling, as well a logarithmic
corrections, then the collapse is very good both with and
without logarithmic corrections, making it hard to verify
the logarithmic corrections.
Since we have results for large system sizes (32000 spins)

we instead attempt to directly fit a curve of the form

m(T )∼ (T −Tc)1/2| log |(T −Tc)/T0||a (2)

to the part of the critical region where the MC data has
converged. For different values of Tc we let T0 and the
exponent a vary, and display the value of a that gives
the best fit, together with the corresponding root mean
squared error (rmse) in fig. 6. There is a minimum in the
rmse around a= 0.18, giving numerical evidence of non-
zero logarithmic corrections. However, the exact value of
the optimal Tc and a depends on the temperature interval
included in the fit, but a finite value of a does improve
the fit.
For the thermodynamic quantities that diverge at the

critical point we have not been able to use the same
direct fit due to the large finite-size effects. However,
convincing evidence for logarithmic corrections in the heat
capacity can still be obtained by plotting the peak height
against a logarithmically corrected system size. This curve
should tend to a constant for large system sizes, and as
can be seen in fig. 7 the curve levels out significantly
faster for the predicted exponent a= 1/3 [23] than for the
mean-field result a= 0.

Magnetic domains. – Griffiths’s theorem predicts the
formation of domains in order to make the free energy
independent of sample shape, but it does not answer
the fundamental question of the size and shape of the
domains. The domain structure is the result of an energy
balance between bulk and surface contributions [28]. In
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Fig. 7: (Colour on-line) The peak of the heat capacity grows
logarithmically with system size.

Fig. 8: Domain configurations of parallel sheets (E2), a checker-
board pattern (E4) and cylinders (Ec).

the absence of a demagnetization field the ground state
for the dipolar model we consider is ferromagnetic, and
the introduction of a domain wall increases the bulk
dipolar energy by an amount proportional to the area
of the domain wall. However, the magnetostatic energy
is given by a surface integral over the magnetic surface
charge density, and this energy decreases linearly with
the size of the domains. Considering a cylinder with the
magnetization direction along the axis, the total energy
per unit surface area (top and bottom) is [28]

E = δµM2D+αLσ/D, (3)

where D is the linear size of the domain, L the length
of the cylinder, σ the domain wall energy density, and
the prefactors δ and α are determined by the geometric
domain wall configuration. The energy is minimized by

a domain width D=
√
αLσ
δµM2 which results in an energy

E = 2
√
δαµM2Lσ.

A previous theoretical study of domain formation in
general Ising dipolar magnets focused on the striped
structure, and in particular on the so-called branching,
where spikes of opposite magnetization form near the
surface of the sample [29,30]. Domain walls in LiHoF4
have been theoretically studied in the context of a possible
roughening transition [31], but here our goal is to calculate
the ground-state domain structure, energy and size using
material specific parameters for LiHoF4. We consider three
domain structures [28] that may be relevant for LiHoF4:
thin parallel sheets (E2, with δ= 1.7, α= 1), checkerboard
(E4, with δ= 1.06, α= 2) and cylinders (Ec, with δ= 0.74,
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Fig. 9: (Colour on-line) The energy per spin for parallel sheets
(E2), checkerboard (E4) and cylindrical (Ec) domain structures
for a cylinder of diameter 3.2mm and height 4.8mm (solid
curves). Dashed curves show E2 for cylinders of increasing
heights 9.6mm and 19.2mm.

α=
√
2π), depicted in fig. 8. Since the total energy is

proportional to
√
δσ, which is lowest for E2, we expect

the ground-state configuration to consist of parallel sheets.
However, in order to calculate the size of the domains we
need to know the domain wall energy density, σ, which we
consider next.
Using the Ewald summation technique we can compute

the total energy of the infinite periodic domain config-
uration E2 as a function of domain width. Since the
domain structure has zero total magnetic surface charge,
the magnetostatic surface term becomes negligible in the
limit of infinite system size, and the energy is of the
form E = αLσ/D+E0, where we have explicitly included
the ground-state energy E0. We note that this is the
bulk limit considered by Griffiths, and as the domain
size grows the ground-state energy for LiHoF4 always
approaches the energy of the ferromagnetic ground state
for zero demagnetization factor, in accordance with Grif-
fiths’s theorem. We carried out computations up to linear
domain sizes of 30 unit cells. Since finite-size effects are
very small the total energy follows the form E =C1/D+
C2 to very high accuracy already for very small domain
sizes, allowing us to extract the constants C1 and C2.
For the periodic stripe pattern our calculation yields E =
(0.598/D− 0.9638)K/spin, where D is the linear dimen-
sion of the stripe in units of 5.175 Å, and −0.9638K/spin
is the ferromagnetic-ground-state energy. From the first
term (0.5898K/spin) we find the domain wall energy σ=
0.059 erg/cm2 for LiHoF4. This can be compared to typi-
cal domain wall energies in iron of about 1 erg/cm2 [28].
Having calculated the domain wall energy, we plot the

energy per spin as a function of domain size in the fully
polarized ground state for the three configurations in
fig. 9. As expected, the configuration of parallel sheets
has the lowest energy. The calculation was done for a
cylinder of diameter 3.2mm and length 4.8mm [14]. We
also show E2 for lengths 9.6mm and 19.2mm. As the

ratio of end surface to bulk decreases, the demagnetization
factor of the cylinder decreases and the size of the
domains grows, as shown in fig. 9. As the cylinder grows
longer we also see that the total energy approaches the
ferromagnetic-ground-state energy −0.9638K/spin. From
fig. 9 we consequently see that for finite samples there is
a small shape dependence of the energy, which disappears
in the limit of infinite system size considered by Griffiths.
We are aware of two experimental observations of the

domain structure in LiHoF4. In ref. [14] needle-shaped
domains of size 5µm at T = 0.92Tc were observed in a
cylinder appropriate for our calculation, but unfortunately
no measurements were reported close to the ground state.
A different set of measurements were made at slightly
lower temperature (T = 0.87Tc) in a slab-like geometry of
thickness 0.67mm [32]. In zero applied field a stripe-like
structure appears with a width of about 3µm. However,
the inhomogeneity of the demagnetization field causes
branching near the surface of the crystal, an effect which
we have not considered here. Furthermore, the pure
stripe pattern is also broken up by dislocations and
fluctuations [32]. It would therefore be very interesting to
experimentally observe the ground-state domain structure
at a lower temperature in a clean crystal, to see whether
the theory presented here suffices to determine the ground-
state domain structure.

Conclusion and summary. – We have provided
strong evidence that the rare-earth magnet LiHoF4 is a
very good realization of the dipolar Ising model. This
enables detailed comparisons of theory, experiments and
simulations. As examples of this we give evidence of
the logarithmic corrections predicted by renormalization
group theory for the dipolar model, and we predict that
the ground-state domain configuration for cylindrically
shaped samples consists of thin parallel sheets. LiHoF4
is an excellent testing ground for theories of domains
because the domain walls have no width, very clean single
crystals are available, and domains appear naturally in
MC simulations. In particular, we believe there is much
further scope for the study of domain wall motion in the
presence of disorder and transverse fields.
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