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Abstract – A new explicit analytical form of the dispersion relation for photon propagation in the
presence of a strong background magnetic field is derived within the effective action framework.
The dispersion relation is expressed in terms of well-known special functions, and the treatment
is exact within the linearization procedure, the one-loop approximation, and the soft photon
approximation. The results are incorporated in a kinetic spin plasma description for the purpose
of studying quantum electrodynamical effects of strongly magnetized plasmas. The results are
applied to astrophysical examples.
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The response of the quantum electrodynamical (QED)
vacuum to an external field is similar to that of a non-
linear medium in the sense that the vacuum acquires a
polarization and a magnetization. In recent years there
have been an increasing interest for QED vacuum effects.
This has partly been motivated by advances in high-
intensity laser technologies [1]. It is expected that already
the next generation high-power laser systems will take us
to intensity regimes where quantum vacuum effects may be
directly observable. There are even suggested schemes for
reaching the critical Sauter-Schwinger field strength [2].
QED has also found applications in astrophysics. Some

observations [3] indicate that the magnetic field strength
of certain types of neutron stars, called magnetars, may
surpass the critical magnetic field strength Bcr at which
the cyclotron energy equals the electron rest mass. (Bcr =
m2e/e≈ 4.4× 109 T, using natural units; �= c= 1. Here
me is the electron rest mass and e is the elementary
charge.) Detailed knowledge of QED polarization effects
in strongly magnetized plasmas can help understanding
the thermal spectra observed from magnetars [4].
The purpose of this paper is twofold. First we study

vacuum polarization effects on a test photon propagating
on a background magnetic field of arbitrary field strength.
Effects of a magnetized vacuum has been extensively
studied in a vast number of publications, see, e.g., [5–16].
To this field of research we contribute with a new explicit
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analytical form of the vacuum dispersion relation in terms
of the gamma function Γ(h), its logarithm lnΓ(h), the
derivative of ln Γ(h) which is denoted ψ(h) and the first
derivative of the Hurwitz zeta function with respect to
the first argument ζ ′(−1, h) (see, e.g., [17]). We have
used an effective action approach, and the treatment is
exact within the linearization procedure, the one-loop
approximation, and the soft photon approximation. Since
we include the non-transversality of the test photon in our
description, our expression is valid even for ultra strong
magnetic fields where the phase velocity of a test photon
in the parallel mode is significantly affected. Thus, our
results maps the entire region 0�B <∞, provided that
the one loop process gives the dominating contribution.
This dispersion relation is the main result of this paper.
Secondly, we incorporate the vacuum polarization

effects into a kinetic spin plasma description for the
purpose of studying QED effects in strongly magnetized
plasmas. This gives the results a wide range of applicabil-
ity to astrophysical environments. Whereas spin statistics
have previously been included in kinetic plasma models,
see, e.g., ref. [18], this is to our knowledge the first time
that spin dynamics and the intrinsic magnetization that
follows is modeled in kinetic plasmas apart from the
recent paper [19] where this theory was first outlined. We
apply our results to astrophysical examples.
The effective action approach to QED translates the

properties of a full quantum theory into classical elec-
trodynamics. Thus, QED polarization effects show up as
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]
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α
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3
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ψ (1+h)− 2h2+(3h)−1+8ζ ′ (−1, h)− 4h ln Γ (h)+ 2h ln 2π+2h lnh

]
, (3c)

an additional contribution to the classical equations of
motion. The one loop effective action for light propaga-
tion [20] is given by

L = −F − 1

8π2

∫ i∞
0

ds

s3
e−m

2
es

[
(es)2ab coth (eas) cot (ebs)

− (es)
2

3

(
a2− b2)− 1]−Aαjα, (1)

where a= [(F2+G2)1/2+F ]1/2 and b= [(F2+G2)1/2−
F ]1/2. This Lagrangian is derived under the soft
photon approximation, ω�me. Here F = 14FabF ab =
1
2

(
B2−E2), G = 14FabF̂ ab =−E ·B, where F ab is the

electromagnetic field tensor, F̂ ab = εabcdFcd/2, ε
abcd is

the totally antisymmetric tensor, Aα is the four-potential
and jα is the four-current. Note that for a pure magnetic
field, we have F =B2/2 and G = 0.
The equations of motion are obtained using Euler-

Lagrange equations, and takes the form [6,14]

γF∂µFµν +
1

2

[
γFFFµνFαβ + γGGF̂µνF̂αβ

+ γFG
(
FµνF̂αβ + F̂

µνFαβ

)]
∂µF

αβ =−jν , (2)

where we have used the notation γF = ∂L/∂F , γFF =
∂2L/∂F2, etc.
If no external electric field is present, the scalars γF ,

γG , γFF , γGG and γFG can be calculated analytically.
To do this, we express the derivatives ∂F and ∂G in
terms of a and b; ∂F =

(
a2+ b2

)−1
(a∂a− b∂b) and ∂G =(

a2+ b2
)−1
(b∂a+ a∂b). We then perform the differentia-

tion on the terms inside the square bracket of (1), after
which we take the limit b→ 0. The remaining integrals can
be solved analytically using regularization techniques [21].
We note that convergence of the integrals for 0<h<∞ is
implicitly ensured by the prescription m2e→m2e − iε.
The scalars γF , γG , γFF , γGG and γFG take on the

following expressions: γG = 0, γFG = 0,

see eqs. (3a)–(3c) above

where α= e2/4π is the fine structure constant, and we
have defined z = esa and h=m2e/2ea=Bcr/2B. For weak
fields, the scalars γF , γFF and γGG agrees with the results

we get if the well-known weak field expansion of eq. (1)
were used:

Lw =−F + α

90π

1

B2cr
(4F2+7G2)−Aαjα. (4)

Furthermore, ∇2L= γFF + γGG agrees analytically with
the result found in eq. (3.48) of ref. [21].
A legitimate question is how radiative corrections will

alter the equations for ultra strong fields. Starting from
some basic assumptions of how higher-loop corrections
scales with the field strength, it can be argued that
these corrections are likely to be harmless [21]. Thus, the
physical response of the system may be largely governed by
the dynamics described by the one-loop Lagrangian even
for ultrastrong magnetic fields. So, with the use of the
scalar expressions (3a)–(3c) it is possible to study light
propagation effects at arbitrary magnetic field strengths.
Next we will derive a dispersion relation for light pro-

pagation and introduce a kinetic spin plasma description
to model the current jν . We assume that a weak elec-
tromagnetic field is propagating on a background of a
strong external magnetic field, such that Fµνtot → Fµν +
fµν , where Fµν is a strong static and isotropic field
and fµν is a weak field that has a harmonic oscillation
ei(k·r−ωt). Linearizing the equations of motion, ∂µ→−ikµ,
γF → [∂L/∂F ]Fµνtot=Fµν , the space component of eq. (2)
can be written as

γFF (B0 · (k×E1)) (k×B0)− γGGω2B0 (B0 ·E1)
+ γF

(
ω2E1− k2E1+k (k ·E1)

)
= iωj, (5)

where we have used ∇×E1 =−∂tB1, and where the
subindex 0/1 denotes field components of the back-
ground/weak field, respectively.
We use the kinetic spin plasma theory outlined in

ref. [19] to obtain an expression for the current vector,

j = jfree+∇×M
=
∑
i

[
qi

∫
vfidΩ+2µi∇×

∫
sfidΩ

]
, (6)

whereM is the magnetization, f(r,v, s, t) is the distribu-
tion function, s is the spin operator with norm |s|= 1/2,
µi ≈ qi/mi is the magnetic moment of particle species i
with charge qi, and dΩ= v⊥dv⊥dϕvdvzsin θs dθs dϕs with
the velocity expressed in cylindrical coordinates and the
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Dij =



−γF
(
ω2− k2‖

)
0 −γFk⊥k‖

0 −γF
(
ω2− k2)+ γFFk2⊥B20 +ω2p k2⊥k2‖4m2ω2

(
ω2

k2‖
− 1
)

−iω2p
k⊥k‖
2mω

−γFk⊥k‖ iω2p
k⊥k‖
2mω

−γF
(
ω2− k2⊥

)
+ γGGω2B20 −ω2p


, (11)

spin expressed in spherical coordinates. Whereas our QED
description of the vacuum remain valid for arbitrary field
strengths, we will for simplicity restrict the spin plasma
description to be valid for strong magnetic fields far from
resonance, such that ωc = qB/m� ω. Under such condi-
tions, the Vlasov equation reduces to

∂tf + v ·∇f +
[
q

m
(E+v×B)

+
2µi
m
∇ (s · (B−v×E))

]
·∇vf = 0. (7)

Here we have included the spin-orbit coupling which for
strong magnetic fields gives a contribution of the same
order as the standard spin terms. We may write the distri-
bution function as f(r,v, s, t) = f0(v, s)+ f1(r,v, s, t),
where f0 is the Fermi-Dirac equilibrium distribution for
thermal equilibrium and for a large chemical potential,

f0 = n0

(
m

2πkBT

)3/2 µiB0 exp [−mv2/2+µiB0 cos θskBT

]
4πkBT sinh

(
µiB0
kBT

) .

(8)

f0 is normalized such that
∫
f0dΩ= n0 with n0 being the

number density. Here we have without loss of generality
defined B0 =B0ẑ and ky = 0. If we linearize eq. (7) we
can solve this new equation by making a plane wave
ansatz, f1 = f̃1 exp[i(k ·x−ωt)], and write f̃1 as an
expansion in eigenfunctions ψa(ϕv, v⊥) = (2π)−1/2×
exp[−i(aϕv − k⊥v⊥sinϕv/ωc)] such that

f̃1 =
1√
2π

∑
a,b

gab(v⊥, vz, θs)ψa(ϕv, v⊥) exp(−ibϕs), (9)

where a= 0,±1,±2, . . . and b=−1, 0, 1. By recognizing
that

∫ 2π
0

ψaψ
∗
bdϕv = δab it is straightforward to show from

the linearized version of eq. (7) that the most contributing
terms to eq. (9) under the assumption ωc� ω are the
terms where a, b= 0. We get i(ω− kzvz)g00 = 2πI00 where

I00 ≈ q

m
E1z + i

µi

m
cos θs

[
B1zkz

∂f0

∂vz
− kxE1y

2
v⊥

∂f0

∂v⊥

]
(10)

assuming k2⊥kBT/m� ω2c . We treat ions as immobile,
neglect their spin contribution and perform the integrals

in eq. (6). The result is inserted in eq. (5). The system
equations can now be written as DijE1j = 0, where

see eq. (11) above

where ω2p = q
2
en0/me is the plasma frequency. The determi-

nant of Dij gives us the dispersion relation. The classical
plasma contribution is found in the D33-term, while the
other plasma contributions originates from spin dynamics.
Here we have assumed µeB0� kBT which is well satisfied
already for standard neutron star parameters (T ∼ 106K,
B � 108 T) [22]. In the analysis below, we will first focus on
pure vacuum effects, and later discuss spin plasma effects.
In a magnetized vacuum, we have two normal modes

present: the orthogonal mode where the polarization is
orthogonal to the B0,k-plane, and the parallel mode
where the polarization lies in that plane. The phase
velocity ν = ω/k for the two modes takes the form

ν2⊥vac = 1+
γFFB20
γF

sin2 θB, (12a)

ν2‖vac =
1− γGGB20

γF cos2 θB

1− γGGB20
γF

, (12b)

where θB is the angle between B0 and k. For weak fields,
eqs. (12a) and (12b) reduces to the usual vacuum bire-
fringence expressions; ν⊥ ≈ 1− (8α2B20/45m4)sin2θB and
ν‖ ≈ 1− (14α2B20/45m4)sin2θB . Vacuum birefringence in
strong magnetic field regimes have been studied in several
previous publications; e.g., ref. [7] approaches the problem
analytically using the vacuum polarization tensor, and,
e.g., ref. [8] has studied the problem numerically for vari-
ous photon energies. An effective action approach is used
by ref. [9] who expressed the Lagrangian (1) in terms of
special functions, and ref. [11] expresses the Lagrangian as
a non-perturbative slowly convergent series expansion [23].
Reference [24] uses the same approach as ref. [11] but also
takes non-transversality of the photon into account.
In our derivation of eqs. (12a) and (12b), we have

not neglected the non-transversal behavior of the photon.
Thus, the results are valid for arbitrary magnetic field
strengths. Vacuum birefringence for orthogonal propaga-
tion (θB = π/2) of the orthogonal and the parallel mode is
illustrated in fig. 1. The results are found to agree (numer-
ically) with that of ref. [24] if a sufficiently large number
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Fig. 1: (Color online) The phase velocity squared for the
orthogonal (a) and the parallel mode (b) as a function of B/Bcr
at orthogonal propagation. The dashed line is the results found
in, e.g., ref. [7] and the dotted line is the weak field result of
eq. (4). The deviation in (a) between the result of ref. [7] and
our result is smaller than the resolution of the figure.

terms in their series are calculated (≈ 20000 for the high-
est field strengths). It is evident that in the limit of an
infinite strong magnetic field, propagation in the parallel
mode is strictly forbidden, whereas the orthogonal mode is
only slightly affected by the vacuum polarization. Photons
in the parallel mode will consequently be forced to follow
the magnetic field lines. Already for field strengths of a
few hundred Bcr, we may expect a significant magnetic
lensing effect. As a result, a surface area of a neutron star
measured by the two polarization modes will be different.
Now we will include spin plasma effects in the analysis.

We have seen that the QED effects are small for all
field strengths in the orthogonal mode. Consequently, we
neglect the QED contribution to this mode and restrict our
analysis to include spin effects. If we assume orthogonal
propagation (k‖ = 0), the dispersion relation becomes

v2⊥plasma = 1−ω2p/4m2. (13)

For magnetar crust densities, ρ∼ 109 kg/m3 [22], we get
ω2p/4m

2 ∼ 10−3.
For orthogonal propagation in the parallel mode the

spin effects do not contribute to the dispersion relation.
The dynamics is instead governed by QED and classical
plasma effects. The dispersion relation takes the form

Ω‖ =
[(
1− γFK2

)
/
(−γF + γGGB20)]1/2 . (14)

Here we have normalized the relevant parameters accord-
ing to Ω= ω/ωpe andK = k/ωpe. This wave mode is classi-
cally not affected by the presence of a magnetic field, so the
magnetic field dependence in fig. 2 is a pure QED effect.
At field strengths around 300Bcr, the cut-off frequency is
reduced by ∼ 10%. At high frequencies, ωp� ω, plasma
effects are small and the dynamics can be modeled by
eq. (12b).
In this paper we have used a recently developed spin

plasma model [19] to capture the spin dynamics. In
order to further establish our results, it is of interest
for future research to extend this model to also include

Fig. 2: Ω as a function of K for increasing values of B/Bcr for
orthogonal propagation of the parallel mode.

strongly relativistic effects and effects from, e.g., Landau
quantization [25]. While our plasma treatment here is only
valid for strong magnetic fields, our analytic dispersion
relation for photon propagation in vacuum is valid for
arbitrary strong background magnetic field strengths. This
dispersion relation is the main result of this paper and it is
exact within the one-loop approximation, the linearization
procedure and the soft photon approximation.
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