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63040-000 Juazeiro do Norte, Ceará, Brazil
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Abstract – We make an analysis about several aspects of localization of the Kalb-Ramond gauge
field in a specific four-dimensional AdS membrane embedded in a five-dimensional space-time.
The membrane is generated from a deformation of the λφ4 potential and belongs to a new class of
defect solutions. In this context we find resonance structures in the analysis of massive modes. The
study of deformed defects is important because they contain internal structures and these may
have implications to the way the background space-time is constructed and the way its curvature
behaves. The main objective here is to observe the contributions of the deformation procedure to
the resonances and the well-known field localization methods.

open  access Copyright c© EPLA, 2009

Introduction. – In a scenario of extra dimensions the
observable universe is represented by a four-dimensional
membrane embedded in a higher-dimensional space-
time. The standard model of particles is confined in
the membrane while gravitation is free to propagate
into the extra dimension. These ideas have appeared as
alternatives to solve the gauge hierarchy problem [1].
Recently a lot of attention has been given to the study of
topological defects in the context of warped space-times.
The number of extra dimensions guides us in choosing
the right type of defect in order to mimic our brane
world. The key idea for construction of the brane world
is to localize in a very natural way the several fields of
our universe (the bosonic ones and fermionic ones). In
this way several works have considered five-dimensional
universes [2,3] where five-dimensional gravity is coupled
to scalar fields. In this scenario, with a specific choice for
the scalar potential, it is obtained thick domain wall as
solutions that may be interpreted as non-singular versions
of the Randall-Sundrum scenario. Besides gravity, the
study of localization of fields with several spins is very
important [4]. Also, this type of scenario contributes

(a)E-mail: carlos@fisica.ufc.br

for discussions about cosmology. In models with 5-
dimensional membranes, the mechanism controlling the
expansion of the universe have been associated to the
thickness of the membrane along the extra dimension [5].
As known, the kind of structure of the considered

membrane is very important and will produce implica-
tions concerning the methods of field localization. In the
seminal works of Bazeia and collaborators [6,7] a class of
topological defect solutions was constructed starting from
a specific deformation of the φ4 potential. These new solu-
tions may be used to mimic new brane worlds contain-
ing internal structures [7]. Such internal structures have
implications in the density of matter energy along the
extra dimensions [8] and this produces a space-time back-
ground whose curvature has a splitting, as we will show,
if compared to the usual models. Some characteristics of
such model were considered in phase transitions in warped
geometries [9].
Motivated by the references above, our main subject

here is to answer the following question: are these struc-
tures able to localize the tensor gauge field? In a previous
work [10], we find resonances by analyzing the massive
spectrum of the Kalb-Ramond field on Bloch branes.
Now we analyze the behavior of these structures in a
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more complex type of membrane. This letter is organized
as follows: in the second section we describe how the
deformed membrane is constructed and how the space-
time background is obtained; in the third section we
study the localization of the Kalb-Ramond gauge field in
the background obtained; the fourth section is important
because we introduce the dilaton field in order to force
the localization of the Kalb-Ramond field. Such analy-
sis is made in the fifth section; in the sixth section we
analyze the massive modes using a supersymmetric quan-
tum mechanics formalism; the seventh section deals the
resonance structures in the massive spectrum and its rela-
tion with deformations. At the final we present our conclu-
sions and perspectives.

Two-kink solutions modeling the brane. – There
is great interest in studying scalar fields coupled to gravity.
If we consider a D= 5 universe, we should embed a
kink solution in this space-time in order to build our
membrane. These kind of solutions are obtained through
the λφ4 or sine-Gordon potentials. In our case, following
the reference [6], we will obtain a new class of defects
starting from a deformation of the λφ4 potential. In
this way we can analyze localization of fields of several
ranks in a more complete fashion because the deformed
membranes suggests the existence of internal structures.
As we will see, this choice avoids space-time singularities
also, which is only possible by choosing smooth membrane
solutions.
Our model is built with an AdS D= 5 space-time whose

metric is given by

ds2 = e2A(y)ηµνdx
µdxν +dy2. (1)

The warp factor is composed by the function A(y), where
y is the extra dimension. The tensor ηµν stands for the
Minkowski space-time metric and the indexes µ and ν go
from 0 to 3.
In order to construct the membrane solution we start

with an action describing the coupling between a real
scalar field and gravitation:

S =

∫
d5x
√−G

[
2M3R− 1

2
(∂φ)2−V (φ)

]
. (2)

In the last action, the field φ represents the stuff from
which the membrane is made, M is the Planck constant
in D= 5 and R is the scalar curvature. The equations of
motion coming from that action are

1

2
(φ′)2−V (φ) = 24M3(A′)2, (3)

1

2
(φ′)2+V (φ) =−12M3A′′− 24M3(A′)2. (4)

Note that the prime means derivative with respect to the
extra dimension. Basically, we look for solutions in which
φ tends to different values when y→±∞. In a flat space-
time we find kink-like solutions for the above equations

by choosing a double-well potential. Analogously, if we
look for bounce-like solutions in curved space-time, we
should regard potentials containing various minima. In the
presence of gravity, we can find first-order equations by
the superpotential method if we take the superpotential
W (φ) in such a way that ∂W

∂φ
= φ′. Our potential must be

defined by

Vp(φ) =
1

2

(
dW

dφ

)2
− 8M

3

3
W 2, (5)

from where we can conclude that W =−3A′(y). This
formalism was initially introduced to study non-super-
symmetric domain walls in various dimensions [3,11].
Following refs. [6,7,12,13] the superpotential is given by

Wp(φ) =
p

2p− 1φ
2p−1
p − p

2p+1
φ
2p+1
p , (6)

where p is an odd integer. The choice for Wp can be
obtained by deforming the usual φ4 model and it is
introduced in the study of deformed membranes [12]. This
choice will permit us to get new and well-behaved models
for p= 1, 3, 5, . . . (for p= 1 we get the usual φ4 model).
For p= 3, 5, 7, . . . , the potential Vp has one minimum at
φ= 0 and two at ±1. A new class of solutions called two-
kink solutions initially presented in ref. [7] can be obtained
from the choice of the superpotentialWp. For this we solve
∂W
∂φ
= φ′ to find

φp(y) = tanh
p

(
y

p

)
. (7)

Starting from the first-order equation Wp =−3A′p(y), we
can find the solution for the function Ap(y) [12],

Ap(y) = −1
6

p

2p+1
tanh2p

(
y

p

)

−1
3

(
p2

2p− 1 −
p2

2p+1

)

×
{
ln

[
cosh

(
y

p

)]
−
p−1∑
n=1

1

2n
tanh2n

(
y

p

)}
. (8)

The function A(y) determines the behavior of the warp
factor. The characteristics of localization for several fields
and the construction of effective actions in D= 4 will
depend on part of the contribution of the warp factor.
Note that the exponential factor constructed with this
function is localized around the membrane and for large
y it approximates the Randall-Sundrum solution [1].
The solution found here reproduces the Randall-Sundrum
model in an specific limit. The space-time now has no
singularity because we get a smooth warp factor (because
of this, the model is more realistic) [4]. In fact this can
be seen by calculating the curvature invariants for this
geometry. For example, we obtain

R=−[8A′′p +20(A′p)2], (9)
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Fig. 1: Plots of the solution of the curvature invariant R(y)
p= 1 (left) and for p= 3 (dashed line), p= 5 (dotted line) and
p= 7 (solid line) (right).

Note that the Ricci scalar is finite, which we can observe
through fig. 1. We can see also an important character-
istic of the deformed structure in comparison with the
usual thick membrane models generated by simple kinks.
Observing again fig. 1, for p= 1, we have the usual curva-
ture scalar for the non-deformed model, the usual one. In
this case, the curvature has maximum at y= 0 and goes
to negative values when y→∞. However, regarding the
deformed model, taking p= 3, 5 in Rp(y), we obtain a
splitting with the appearance of a region of zero curvature
between two maxima.

The Kalb-Ramond field. – In this section we analyze
the behavior of the Kalb-Ramond field in the presence of
membranes with internal structures. In this case we study
mechanisms of localization and normalization for its zero
modes and for their Kaluza-Klein modes.
Firstly, we introduce in the action of the deformed

membrane the Kalb-Ramond field in the following way:∫
d5x
√−G

[
2M3R−1

2
(∂φp)

2−Vp(φ)−HMNLHMNL
]
,

(10)

whereHMNL = ∂[MBNL] is the field strength for the Kalb-
Ramond field. We will make the gauge choice Bα5 = 0 in
such that its non-null components are only those living in
the membrane. We have found the equations of motion for
BMN and made explicit the part dependent on the extra
dimension:

e−2Ap∂µHµγθ − ∂yHyγθ = 0. (11)

We make now a separation of variables in order to work
the part of the extra dimension,

Bµν(xα, y) = bµν(xα)U(y) = bµν(0)eipαx
α

U(y), (12)

where p2 =−m2. We write HMNL as hµνλU(y). The
equation of motion becomes:

∂µh
µνλU(y)− e2Ap d

2U(y)

dy2
bνλeipαx

α

= 0. (13)

The function U(y) carry all information about the extra
dimension and obeys the following equation:

d2U(y)

dy2
=−m2e−2Ap(y)U(y). (14)

When m2 = 0 we have the solutions U(y) = cy+ d and
U(y) = c with c and d constants. With these at hand
we start to make computations in order to find localized
zero modes of the Kalb-Ramond field in the deformed
membrane. We take the effective action for the tensor field
where we decomposed the part dependent on the extra
dimension,

S ∼
∫
dyU(y)2e−2Ap(y)

∫
d4x(hµνλh

µνλ). (15)

Given the solutions for Ap and for U(y) obtained above,
we clearly observe that due to the minus sign in the warp
factor, the function U(y)2e−2Ap(y) goes to infinity for the
two solutions of U(y). In this way, the effective action for
the zero mode of the Kalb-Ramond field is not finite after
integrating the extra dimension.

Dilatonic deformed brane. – In the last section,
we have not found signals of existence of zero modes
or massive modes trapped to the deformed membrane.
The coupling between the membrane (described by a two-
bounce solution) and the tensor gauge field is strictly due
to the space-time metric. Then, if we want to find localized
modes we must modify the structure of our membrane.
In this point, we would like following the procedure of

refs. [4,14], where the gauge field localization is produced
by including a new scalar field in the model: the dilaton.
By adding this field in the Einstein equations, we obtain
a new metric behavior and new information about the
dynamics of the membrane. The question here is to
understand the behavior of the Kalb-Ramond field in this
new background.
The first step in this analysis is to study the Einstein

equations in this background. We get the action for the
membrane, now with two scalar fields [4],

S =

∫
d5x
√−G

[
2M3R− 1

2
(∂φ)2− 1

2
(∂π)2−Vp(φ, π)

]
,

(16)

where we denote by φ the scalar field responsible for
the membrane. The field π represents the dilaton. It is
assumed a new ansatz for the space-time metric:

ds2 = e2A(y)ηµνdx
µdxν + e2B(y)dy2. (17)

The equations of motion are given by

1

2
(φ′)2+

1

2
(π′)2− e2B(y)V (φ, π) = 24M3(A′)2, (18)

1

2
(φ′)2+

1

2
(π′)2+ e2B(y)V (φ, π) =

−12M3A′′− 24M3(A′)2+12M3A′B′, (19)

φ′′+(4A′−B′)φ′ = ∂φV, (20)

and
π′′+(4A′−B′)π′ = ∂πV. (21)
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Fig. 2: Plots of the curvature invariant R(y) with p= 3, 5, 7
(dotted, dashed and solid line, respectively).

To obtain the first-order equations, we choose the follow-
ing superpotential Wp(φ) [4]:

Vp = e
π√
12M3

{
1

2

(
∂Wp

∂φ

)2
− 5M

2

2
Wp(φ)

2

}
. (22)

The two-kink solutions of the general form (7) are used in
eq. (6) and we obtain:

π=−
√
3M3Ap, B =

Ap

4
=− π

4
√
3M3

, A′p =−
Wp

3
.

(23)
Contrary to the AdS space-time with negative constant

curvature provided by the deformed brane scenario, as we
can see in eq. (23), the solution for the dilaton makes
the space-time singular. The Ricci scalar for this new
geometry is now given by

R=−[8A′′p +18(A′p)2]e
π

2
√
3M3 . (24)

From fig. 2, we note that there is a region near the
membrane where the Ricci scalar is null. When we take
different values for p, the width of this region increases
due to the deformation introduced. Due to the dilaton
coupling, the curvature scalar decreases indefinitely in
regions far from the membrane. However this kind of
singularity is very common in D-brane solutions where
the dilaton solution is divergent [4]. The work [15] presents
some comments about how these singularities can be made
harmless.

Kalb-Ramond field on dilatonic deformed brane.
– Now we try again to localize the tensor gauge field, but
in the new background described in the section above.
The issue here is to verify if the dilaton coupling will be
enough to localize the Kalb-Ramond field in the deformed
membrane. The dilaton coupling is introduced in the
model in the following way [16,17]:

S ∼
∫
d5x(e−λπHMNLHMNL). (25)

Therefore, we must analyze the equations of motion of
the tensor gauge field in the dilaton background. The new
equation of motion is

∂M (
√−ggMP gNQgLRe−λπHPQR) = 0. (26)

With the gauge choice Bα5 = ∂µB
µν = 0 and with

the separation of variables Bµν(xα, y) = bµν(xα)U(y) =
bµν(0)eipαx

α

U(y), where p2 =−m2, a differential equation
which gives us information about the extra dimension is
obtained, namely

d2U(y)

dy2
− (λπ′(y)+B′(y))dU(y)

dy
=

−m2e2(B(y)−A(y))U(y). (27)

For the zero mode, m= 0, a particular solution of the
equation above is simply U(y)≡ cte. This is enough for
the following discussion. The effective action for the zero
mode in D= 5 is

S ∼
∫
d5x(e−λπHMNLHMNL) =∫

dyU(y)2e(−2A(y))+B(y)−λπ(y)
∫
d4x(hµναh

µνα). (28)

Given the solution U(y) constant and regarding the
solutions for Ap(y), B(y) e π(y), it is possible to show
clearly that the integral in the y variable above is finite
if λ> 7

4
√
3M3
, and for p finite. As a consequence, for a

specific value of the coupling constant λ it is possible to
obtain a localized zero mode of the Kalb-Ramond field.

Massive modes. – We should now consider a discus-
sion about massive modes in this background. For this,
we must analyze eq. (27) for m �= 0 trying to write it in a
Schroedinger-like equation through the following change:

dz =dye−
3
4Ap , U = e(

α
2+

3
8 )AU, α=

1

4
−
√
3M3λ. (29)

After all the necessary calculations we arrive at the
equation we want to analyze, namely{

− d
2

dz2
+V (z)

}
U =m2U, (30)

where the potential V p(z) assumes the form,

V p(z) =
[
β2(Ȧp)

2−βÄp
]
, β =

α

2
+
3

8
. (31)

We can see from fig. 3 that the potential is affected
by the deformation procedure introduced in this work.
We identify the existence of two minima whose distance
increases when we increase the values of p. The form of
the potential is also directly changed. Note that we use√
3M3λ> 1 in order to obtain a potential like (31), i.e.,
the standard form found when we write Schrodinger-like
equations. This choice is fundamental in order to find finite
results regarding the behavior of the Kalb-Ramond field.
It is interesting to point out that the Schrodinger-

type equation (30) can be written in the supersymmetric
quantum mechanics scenario as follows:

Q†QU(z) =
{
d

dz
−βȦ

}{
d

dz
+βȦ

}
U(z) =−m2U(z).

(32)
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Fig. 3: Plots of the potential V p(z) with p= 3 (dashed line), p=
5 (dotted line) and p= 7 (solid line). We have put

√
3M3λ= 2.
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Fig. 4: Plots of Up(z) for p= 1 (dotted line), p= 3 (dashed
line) and p= 5 (solid line), where we put m2 � V p(z)max (left)
and m2 >V p(z)max (right). We use

√
3M3λ= 2.

From the form of eq. (32), we exclude the possibility of
normalized negative energy modes to exist. On the other
hand, we exclude also the possibility of the presence of
tachyonic modes, which is a necessary condition to keep
the stability of gravitational background.
We cannot find analytical solution of the massive modes

wave function in Schrodinger equation. However, we will
be able to analyze the solution for Up by numerically
solving eq. (30). We plot in fig. 4 the wave function so
obtained for two values ofm2. As we can observe, when we
makem2 >V p(z)max, we minimize the contribution due to
the deformations over the solution Up. However, regarding
m2 � V p(z)max, as we increase p we reduce the frequency
of oscillations of the solutions Up. We must remember that
the search for finite solutions it was only possible due to
the choice

√
3M3λ> 1.

As mentioned in ref. [12], the behavior of the wave
function suggests us a free motion in the bulk, but no
trapping in the membrane. An interesting point to be
investigated is how the intensity of the dilaton constant
coupling may modify the patterns of solutions observed
in fig. 4. For this, we solve again eq. (30), but this time,
changing the values of the constant coupling λ. We plot
in fig. 5 the function Up(z), this time for

√
3M3λ= 20

on the left and
√
3M3λ= 40 on the right. We note the

suppression of the mode oscillations in regions near the
membrane due to the increasing of λ. On the other hand,
in regions far away from z = 0 the amplitude oscillations
grows.

Resonances. – The study of the resonances is impor-
tant since it can gives relevant information about the

20 40 60 80 100
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6 107
4 107
2 107

2 107
4 107
6 107

U z

20 40 60 80 100
z

2 1024

1 1024

1 1024

2 1024
U z

Fig. 5: Plots of Up(z) for p= 1, where we put m= 0, 5,√
3M3λ= 20 (left) and

√
3M3λ= 40 (right).
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Fig. 6: Plots of Np(m) for p= 1 (thin line), p= 3 (points) and
p= 5 (thick line). We use

√
3M3λ= 2.

massive modes [18–23]. In order to better understand
the coupling between massive modes and matter on the
membrane we should know, starting from eq. (32), the
amplitude of the plane wave function Up(z) normalized
at z = 0. As is pointed out in refs. [2] and [24], for highly
massive modes in relation to V (z)max, the potential repre-
sents only a little perturbation. Nevertheless, it is possible
that modes of the function U(z) for which m2 � V (z)max
can resonate with the potential. The quantity |ζUm(0)|2,
being ζ a normalization constant, should give us the prob-
ability of finding a mode of mass m at z = 0 and is
given by

Np(m) =
|Um(0)|2∫ 100

−100 |Um(z)|2dz
. (33)

In fig. 6 we plot Np(m) = |ζUp(0)|2 where we can identify,
for p= 1, a resonant peak nearm= 0, precisely form= 9×
10−3. We may interpret that, in this case, the probability
of finding light modes or massless modes coupled to
the membrane is bigger than for heavier modes. This
characteristics disappears when we change the values of p.
As we can observe in fig. 6, the resonant structure tends
to disappear in accordance to the results of localization of
the zero mode.
We can still test the consistency of the above results

regarding again the model without the dilaton coupling. In
this case, we do not find signals of localization of the Kalb-
Ramond field. In this way, supressing the dilaton couling,
we can extract the function Np(m) from eq. (30) by the
same steps discussed before and plot the results in fig. 7.
As we expect, the resonant structure disappears and the
couplings of the zero modes is highly suppressed.

Conclusions. – In this article we analyze under several
aspects the localization properties of the Kalb-Ramond
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Fig. 7: Plots of Np(m) for p= 1 (thin line), p= 3 (points) and
p= 5 (thick line). We use

√
3M3λ= 0.

tensor gauge field in a very specific type of membrane: the
deformed membrane.
The analysis of the Kalb-Ramond field is jeopardized

since the effective action is not normalizable: we have not
zero modes for the Kalb-Ramond field. The resulting equa-
tion of motion for the massive modes is not found and it
can not be written in a form of Schrodinger-like equation.
This fact do not allows us to interpret quantum mechan-
ically the problem. What we do to circumvent this result
is to add one more field in the model, the dilaton, and
this changes a little the gravitational background. After
this modification, we can, under some conditions, find a
localized tensorial zero mode. Related to the spectra of
massive states, we see that the effective potential in the
Schrodinger-like equation is affected by the deformations
made in the membranes. The numerical analysis of that
equation for massive states reveals that there are plane
waves describing the free propagation of particles in the
bulk. The dilaton coupling change the amplitude of oscil-
lations of the modes away from the membrane. Indeed,
studying the coupling of the matter massive states with
the membrane we have found a resonance, which again
disappears with the deformations. The resonance struc-
tures show us that only light modes of the KK spec-
trum present not suppressed coupling with the membrane.
Finally, we showed the consistency of the results obtained
with those from the model without the dilaton.
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