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Abstract – A proof of the quantum H-theorem taking into account nonextensive effects on the
quantum entropy SQq is shown. The positiveness of the time variation of S

Q
q combined with a

duality transformation implies that the nonextensive parameter q lies in the interval [0,2]. It is
also shown that the stationary states are described by quantum q-power law extensions of the
Fermi-Dirac and Bose-Einstein distributions. Such results reduce to the standard ones in the
extensive limit, thereby showing that the nonextensive entropic framework can be harmonized
with the quantum distributions contained in the quantum statistics theory.

Copyright c© EPLA, 2010

Introduction. – Boltzmann’s famous H-theorem,
which guarantees positive-definite entropy production
outside equilibrium, also describes the increase in the
entropy of an ideal gas in an irreversible process, by
considering the Boltzmann equation. Roughly speaking,
this theorem implies that in the thermodynamical equi-
librium the distribution function of an ideal gas evolves
irreversibly towards Maxwellian equilibrium distribu-
tion [1]. In the special relativistic domain, the very first
derivation of this theorem was done by Marrot [2] and, in
the local form, by Ehlers [3], Tauber and Weinberg [4] and
Chernikov [5]. As well known, the H-theorem furnishes
the Juttner distribution function for a relativistic gas
in equilibrium, which contains the number density, the
temperature, and the local four-momentum as free para-
meters [6]. In the quantum domain, the first derivation
was done by Pauli [7], which showed that the change of
entropy with time as a result of collisional equilibrium
states are described by Bose-Einstein and Fermi-Dirac
distributions.
Recently, a considerable effort has been done toward

the development of a generalization of thermodynamics
and statistical mechanics aiming at better understanding a
number of physical systems that possess exotic properties,
such as broken ergodicity, strong correlation between

(a)E-mail: raimundosilva@dfte.ufrn.br
(b)E-mail: doryh@dfte.ufrn.br
(c)E-mail: alcaniz@on.br

elements, multifractality of phase-space and long-range
interactions. In this regard, the nonextensive statistical
mechanics (NESM) framework proposed by Tsallis [8] is
based on the nonadditive q-entropy

Sq = k
1−∑Wi=1 pqi
q− 1 , (1)

where k is a positive constant, W is the number of micro-
scopic states, and pi is a normalized probability distribu-
tion. In this approach, additivity for two probabilistically
independent subsystems A and B is generalized by the
following pseudo-additivity:

Sq(A,B)

k
=
Sq(A)

k
+
Sq(B)

k
+(1− q)Sq(A)Sq(B)

k
. (2)

For subsystems that have special probability correlations,
extensivity may be no longer valid, so that a more realistic
description may be provided by the Sq form with a
particular value of the index q �= 1, called the q-entropic
parameter. In the limit q→ 1, not only the Boltzmann-
Gibbs (BG) entropy S1 = k

∑W
i=1 pi ln pi is fully recovered,

but so is the additivity property for the subsystems A and
B above, i.e., SBG(A,B) = SBG(A)+SBG(B).
Several consequences of this generalized framework have

been investigated in the literature [9] and we refer the
reader to ref. [10] for a regularly updated bibliography.
In particular, it is worth mentioning that the proofs
of both the nonrelativistic and relativistic nonextensive
H-theorem have been discussed in refs. [11–13].
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The aim of this letter is twofold. First, to derive a
proof of the quantum H-theorem by including nonexten-
sive effects on the quantum entropy SQ in the Tsallis
formalism, as well as by considering statistical correlations
under a collisional term from the quantum Boltzmann
equation1. Second, to obtain from this proof a natural
generalization of the quantum Bose-Einstein and Fermi-
Dirac distributions. It is shown that the stationary states
are simply described by a q-power law extension of the
usual Fermi-Dirac and Bose-Einstein distributions. From
the positiveness of the rate dSQq /dt we also discuss possi-
ble constraints on the dimensionless index q.

Quantum H-theorem. – Let us start by presenting
the main results of the standard H-theorem in quantum-
statistical mechanics. The first one is a specific functional
form for the entropy2, which is expressed by the logarith-
mic measure [1]

SQ =−
∑
κ

[nκ lnnκ∓ (gκ±nκ) ln(gκ±nκ)± gκ ln gκ].
(3)

The second one is the well-known expression for quan-
tum distributions, which is the rule of counting of quantum
states in the case of Bose-Einstein and Fermi-Dirac gases

nκ =
gκ

eα+βεκ ∓ 1 . (4)

These two statistical expressions are the pillars of the
quantum H-theorem. As is well known, the evolution of
SQ with time as a result of molecular collisions leads to
the quantum distributions nκ.

Proof of Hq-theorem. In order to study the influence
of the NESM on the quantum H-theorem, let us now
consider a spatially homogeneous gas of N particles
(bosons or fermions) enclosed in a volume V . In this case,
the time derivative of the particle number nκ is given
by considering collisions of pairs of particles, where a
pair of particles goes from a group κ, λ to another group
µ, ν. Here, the expected number of collisions per unit
of time is given by3 Zκλ,µν =Aκλ,µνnκnλ(gµ±nµ)(gν ±
nν), where, as before, the upper sign refers to bosons, and
the lower one to fermions. The coefficient Aκλ,µν must
satisfy the relation

Aκλ,µν =Aµν,κλ, (5)

which in turn determines the frequency of collisions that
are inverse to those considered, i.e., collisions in which

1In nonextensive kinetic framework, this is equivalent to a
generalization of the molecular chaos hypothesis.
2In this context, we assume a gas appropriately specified by

regarding the states of energy for a single particle in the container
as divided up into groups of gκ neighboring states, and by stating
the number of particles nκ assigned to each such group κ.
3In other words, the collisions in the sample of gas in a condition

specified by taking nκ, nλ, nµ, nν , . . . as the numbers of particles in
different possible groups of gκ, gλ, gµ, gν , . . . , elementary states, are
described quantitatively by Zκλ,µν . (For details see ref. [1].)

particles are thrown from µ, ν to κ, λ instead of from κ, λ
to µ, ν. This coefficient must have a value close to zero for
collisions which do not satisfy the energy partition:

εµ+ εν = εκ+ ελ. (6)

By taking into account the idea that the temporal evolu-
tion of the distribution nκ is affected by the nonextensive
effect4, we may assume the following quantum q-transport
equation:

dnκ
dt
=Cq(nκ), (7)

where Cq denotes the quantum q-collisional term. As Cq
must leads to a non-negative rate of change of quantum
entropy, its general form reads

Cq(nκ) = −
∑
λ,(µν)

Aκλ,µν(gµ±nµ)(gν ±nν)

× (gκ±nκ)(gλ±nλ) nκ

gκ±nκ ⊗q∗
nλ

gλ±nλ
+
∑
λ,(µν)

Aµν,κλ(gκ±nκ)(gλ±nλ)

× (gµ±nµ)(gν ±nν) nµ

gµ±nµ ⊗q∗
nν

gν ±nν ,
(8)

where the sum above spans over all groups λ and also over
all pairs of groups (µν). Also, we make a double inclu-
sion of those terms in the summation for which λ= κ.
In the sum above, the standard product between the
distributions (molecular chaos hypothesis) is replaced by
the generalized form of the molecular chaos hypothesis,
i.e, the q-product between the distributions (For similar
arguments on the generalization of stosszahlansatz, see
ref. [14]). Note that, in the limit q→ 1, the above expres-
sion reduces to

C1(nκ) = −
∑
λ,(µν)

Aκλ,µνnκnλ(gµ±nµ)(gν ±nν)

+
∑
λ,(µν)

Aµν,κλnµnν(gκ±nκ)(gλ±nλ), (9)

thereby showing that the molecular chaos hypothesis and
the standard dnκ/dt are readily recovered.
Now, we introduce the generalized entropic measure

defined in5, i.e.,

SQq =−
∑
κ

nqκ lnq nκ∓ (gκ±nκ)q lnq(gκ±nκ)± gqκ lnq gκ,
(10)

4In nonextensive kinetic theory viewpoint, this effect corresponds
to introduce statistical correlations in the collisional term of the
Boltzmann equation through the generalization of stosszahlansatz.
For details, see refs. [10,11] by adopting the Tsallis framework.
5This is a q-quantum entropy which generalize the standart one.

By considering the fermions and gκ = 1 this expression provides the
equation of ref. [15].
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where we use the functionals Hq =−SQq /k. The general-
ized q-logarithm is defined by [8]

lnq(x) :=
x1−q − 1
1− q , (11)

whose inverse function is given by the q-exponential
function

expq(x) := [1− (1− q)x]1/(1−q). (12)

Note that, when q→ 1, eq. (10) reduces to the standard
case (3).
By taking the time derivative of SQq , we obtain

dSQq
dt
=−q

∑
κ

[lnq∗ nκ− lnq∗(gκ±nκ)]dnκ
dt
, (13)

where we have used the transformation fq−1lnqf = lnq∗f
with q∗ = 2− q. Now, we make use of the so-called
q-algebra, introduced in ref. [16], and define the
q-difference and the q-product, respectively, as

x�q∗ y := x− y
1+ (1− q∗)y , ∀ y �= 1

1− q∗ , (14a)

x⊗q∗ y :=
[
x1−q

∗
+ y1−q

∗ − 1
] 1
1−q∗
, x, y > 0, (14b)

and the lnq of a q-product and of a quotient

lnq∗(x⊗q∗ y) := lnq∗(x)+ lnq∗(y), (15a)

lnq∗(x)�q∗ lnq∗(y) := lnq∗
(
x

y

)
. (15b)

From definitions (14a) and (15b), we can rewrite the
term in square brackets in eq. (13) as

lnq∗

(
nκ

gκ±nκ

)
=
lnq∗ nκ− lnq∗(gκ±nκ)

ñκ
, (16)

so that eq. (13) reads

dSQq
dt
= q
∑
κ

[
lnq∗

(
nκ

gκ±nκ

)]
· ñκ dnκ

dt
, (17)

where

ñκ = 1+ (1− q∗) lnq∗(gκ±nκ) = 2− (gκ±nκ)q∗−1. (18)
Substituting (7) into (17), we arrive at

dSQq
dt
= q
∑
κ

∑
λ,(µν)

Aκλ,µν ñκ(gµ±nµ)

×(gν ±nν)(gκ±nκ)(gλ±nλ)
× nκ

gκ±nκ ⊗q∗
nλ

gλ±nλ · lnq∗
(
nκ

gκ±nκ

)

−q
∑
κ

∑
λ,(µν)

Aµν,κλñκ(gκ±nκ)

×(gλ±nλ)(gµ±nµ)(gν ±nν)
× nµ

gµ±nµ ⊗q∗
nν

gν ±nν · lnq∗
(
nκ

gκ±nκ

)
, (19)

where the summations include all groups κ and λ and all
pairs of groups (µν).
In order to rewrite dSQq /dt in a more symmetrical form

some elementary operations must be done in the above
expression. Following standard lines [1], we first notice
that changing to a summation over all pairs of groups
(κ, λ) does not affect the value of the sum. This happens
because the coefficients satisfies the equality for inverse
collisions (see eq. (5)). By implementing these operations
and symmetrizing the resulting expression, dSQq /dt can be
rewritten as

dSQq
dt
=
q

2

∑
(κλ),(µν)

Aκλ,µν ñκñλ(gµ±nµ)

× (gν ±nν)(gκ±nκ)(gλ±nλ)
×
[
nκ

gκ±nκ ⊗q∗
nλ

gλ±nλ −
nµ

gµ±nµ ⊗q∗
nν

gν ±nν

]

×
[
lnq∗

nκ

gκ±nκ + lnq∗
nλ

gλ±nλ
− lnq∗ nµ

gµ±nµ − lnq∗
nν

gν ±nν

]
. (20)

Note that the summation in the above equation is
never negative, because the terms ñκ, ñλ and gj ±nj with
j = µ, ν, κ, λ are always positive and gj � nj on account for
the Pauli exclusion principle. Note also that by defining

X :=
nκ

gκ±nκ ⊗q∗
nλ

gλ±nλ , (21a)

Y :=
nµ

gµ±nµ ⊗q∗
nν

gν ±nν , (21b)

we can show that the function

ϕ(X,Y ) = (X −Y )(lnq∗ X − lnq∗ Y ), (22)

is also a positive quantity.
Finally, we note that, for positive values of q, and

by considering the duality transformation q∗ = 2− q, i.e.,
q < 2 (as pointed out in ref. [17]), we obtain the quantum
Hq-theorem

6

dSQq
dt
� 0. (23)

Note that, when q < 0 or q > 2, the quantum q-entropy
is a decreasing function of time. Consequently, it seems
that within the present context the parameter q should
be restricted to interval [0,2]. Notice also that the entropy
does not change with time if q= 0. It should be emphasized
that, in quantum regime, the equivalent constraint on the
nonextensive parameter was also calculated based on the
second law of thermodynamics, i.e., through Clausius’
inequality [18].
In order to finalize the proof of the quantumH-theorem,

let us now calculate the nonextensive Fermi-Dirac and

6It is worth emphasizing that this same interval is also obtained
in both nonrelativistic and relativistic regimes. See, e.g., [11].
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Bose-Einstein distributions. As happens in the extensive
case, dSQq /dt= 0 is a necessary and sufficient condition for
local and global equilibrium. From eq. (20), we note that
the following condition must occur, if and only if

lnq∗
nκ

gκ±nκ + lnq∗
nλ

gλ±nλ = lnq∗
nµ

gµ±nµ + lnq∗
nν

gν ±nν ,
(24)

where for a null value of this rate of change, eq. (24) satis-
fies the energy relation (6) for collisions with apprecia-
ble value of Aκλ,µν . Here, the above sum of q-logarithms
remains constant during a collision, i.e., it is a summa-
tional invariant. In the quantum regime, the solution of
these equations is an expression of the form

lnq∗
nκ

gκ±nκ +α+βεκ = 0, (25)

where α and β are constants independent of κ. After
some algebra, we may rewrite eq. (25) as the quantum
nonextensive distribution

nκ =
gκ

expq∗(α+βεκ)± 1
, (26)

where expq∗(x) is the q-exponential function defined in
eq. (12). The above expression, which coincides with the
q-quantum distribution for fermions derived in ref. [15],
seems to be the most general expression which leads to
a vanishing rate of change, and clearly reduces to Fermi-
Dirac and Bose-Einstein distribution in the extensive limit
q→ 1.
Final remarks. – In this letter, we have investi-

gated a q-generalization of the quantum H-theorem based
on the Tsallis nonextensive thermostatistics. We have
shown that the q-thermostatistics can be extended in
order to achieve the quantum-distributions concepts of the
quantum-statistical mechanics. In addition, their gener-
alization to the relativistic framework can be readily
accomplished.
It should be emphasized that the combination of the

quantum Hq-theorem and duality transformation [17]
has constrained the nonextensive parameter to interval
of validity q ∈ [0, 2], which is fully consistent with the
results of refs. [18,19] and also with the bounds obtained
from several independent studies involving the Tsallis
nonextensive framework (see, e.g. [20]). In particular, for
gκ = 1 and the Fermi-Dirac case, the quantum non-
extensive distributions (eq. (26)), reproduces the result
originally obtained in ref. [15].
Finally, it is worth emphasizing that this work seems to

complement a series of investigations on the compatibility
between nonextensivity and the Boltzmann H-theorem
and shows, together with refs. [11–13], that a nonextensive
Hq-theorem can be derived in nonrelativistic, relativistic
and quantum regimes. Also, our formalism is very general,
since our assumptions can be applied to any ensemble
whose quantity SQq can be defined and calculated within
the framework of Tsallis statistics, and whose value of

equilibrium (steady state) is obtained by allowing this
system to evolve in time.
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