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Abstract – The interplay between the diffeomorphism and conformal symmetries (a feature
common in quantum field theories) is shown to be exhibited for the case of black holes in two-
dimensional classical Liouville theory. We show that although the theory is conformally invariant
in the near-horizon limit, there is a breaking of the diffeomorphism symmetry at the classical level.
On the other hand, in the region away from the horizon, the conformal symmetry of the theory
gets broken with the diffeomorphism symmetry remaining intact.
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It is a well-known fact from general quantum-
field–theoretic considerations [1] that in two dimensions
there is an interplay between the diffeomorphism and
the trace anomaly of the energy-momentum tensor in
the sense that it is possible to remove one of them but
not both. This is because for the D= 2 case, there is no
regularization which simultaneously preserves conformal
as well as diffeomorphism symmetries [1–4].
Interestingly, we find that such a situation arises in a

classical Liouville theory [5] used to compute the black-
hole entropy owing to the presence of a nontrivial central
charge in the theory [6–11]. Further, Hawking effect was
also studied by using the boundary Liouville model [12].
In classical Liouville theory (which is relevant for black-
hole physics) the energy-momentum tensor is covariantly
conserved but has a nontrivial trace anomaly. However, it
turns out that if we consider terms up to leading order
in the expansion of the metric, near the horizon, the
trace anomaly vanishes and hence the theory becomes
conformally invariant (which explains its utility for studies
on black-hole physics), but the energy-momentum tensor
fails to remain covariantly conserved. Hence, the interplay
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(b)Visiting Associate in S.N. Bose National Centre for Basic
Sciences - Kolkata, India; E-mail: sunandan.gangopadhyay@gmail.
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between the diffeomorphism and the trace anomaly of the
energy-momentum tensor gets exhibited at the classical
level.
To begin with, we consider a four-dimensional spheri-

cally symmetric metric of the form

ds2 = γab(x
0, x1) dxa dxb+ r2(x0, x1) dΩ2, (1)

where γab(x
0, x1) is the metric on an effective 2D space-

timeM2 with coordinates (x0, x1). We now start from the
four-dimensional Einstein-Hilbert action defined by

SEH =− 1

16πG

∫
M4

d4x
√−gR(4). (2)

Considering the above action on the class of spheri-
cally symmetric metrics (1), we obtain an effective two-
dimensional theory described by the action

S =−
∫
M2

d2x
√−γ

(
1

2
(∇Φ)2+ 1

4
Φ2R(2)+

1

2G

)
, (3)

where Φ= rG−1/2 and R(2) is the two-dimensional scalar
curvature1. This action represents dilaton gravity in two
dimensions with r playing the role of dilaton field.

1From now onwards we shall suppress the suffix on R but it is
understood as 2D curvature scalar.
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The above action can now be transformed to a form
similar to that of the Liouville theory [13]

SL =−
∫
M2

d2x
√−γ̄

(
1

2
(∇̄φ)2+ 1

4
qΦhφR̄+U(φ)

)
(4)

with the aid of the following transformations:

γab =

(
φh

φ

) 1
2

e
2φ
qφh γ̄ab, φ=

Φ2

qΦh
, (5)

where Φh = rhG
−1/2 is the classical value of the field Φ at

the horizon and U(φ) = 1
2G (

φh
φ
)1/2e

2φ
qφh . In (4), ∇̄ is the

covariant derivative compatible with the metric γ̄ab while
R̄ is the corresponding curvature scalar. Varying the above
action with respect to the scalar field φ yields the equation
of motion for φ

∇̄a∇̄aφ= qΦh
4
R̄+

dU

dφ
. (6)

Similarly, varying the action with respect to the metric
γ̄ab, we obtain the constraints

Tab ≡ 1
2
∂aφ∂bφ− 1

4
γ̄ab(∇̄φ)2

+
1

4
qΦh(γ̄ab∇̄c∇̄cφ−∇̄a∇̄bφ)− 1

2
γ̄abU(φ) = 0.

(7)

The theory of the scalar field φ described by the action
(4) is not conformal in general. This can be easily seen by
contracting (7) with metric γ̄ab to obtain

T aa =
qΦh
4
∇̄a∇̄aφ−U(φ). (8)

By substituting (6) in the above equation we obtain on
shell expression for the trace of the energy-momentum
tensor

T aa =

(
qΦh
4

)2
R̄+
qΦh
4

dU

dφ
−U(φ). (9)

Thus, we have a nonvanishing trace of the energy-
momentum tensor, leading to the breaking of the
conformal symmetry in the classical Liouville theory.
We would like to point out that such a violation in the
conformal invariance generally occurs when we quantize
the theory on the curved background.
We now take the divergence of (7) and obtain

∇̄aT ab = 1
2

[
∇̄c∇̄cφγ̄be− qΦh

4
R̄γ̄be

]
∇̄eφ− 1

2
∂bU(φ).

(10)

Substituting the equations of motion for φ (6) in (10),
leads to the conservation of the energy-momentum tensor

∇̄aT ab = 0. (11)

Hence, we find that although there is a breaking of the
classical conformal invariance as the energy-momentum

tensor has a nonvanishing trace (9), the diffeomorphism
symmetry remains intact. This is a feature which has been
observed earlier only in a quantum theory.
Now we consider the near-horizon behavior of the theory

defined by (4). For simplicity we consider the metric

ds2 = γ̄ab dx
a dxb =−g(x) dt2+ 1

g(x)
dx2, (12)

where g(x= xh) = 0 defines the location of the event
horizon xh in Schwarzschild coordinates (t, x). Since the
metric coefficient g(x) is a well-behaved function, we can
expand it about x= xh

g(x) = g′(xh)(x−xh)+ 1
2!
(x−xh)2 g′′(xh)

+
1

3!
(x−xh)3 g′′′(xh)+ · · · . (13)

In the vicinity of the horizon, we keep terms proportional
to (x−xh) only. With this approximation, the above
function (13) becomes

g(x)≈ g′(xh)(x−xh) = 2

βH
(x−xh), (14)

where βH is related to the Hawking temperature [6]. Now
we would like to see how the metric function vanishes in
the region near to the horizon. For that it is convenient to
introduce coordinate z defined as

z =

∫ x dx
g(x)
. (15)

Substituting (14) in (15) we get

g(x)≡ g(z) = 2

βH
e
2z
βH . (16)

Note that in the (t, z)-coordinates, large negative z corre-
sponds to the near-horizon limit. We now consider the
equation of motion for scalar field (6) in the vicinity of
the horizon. Expressing (6) in (t, z)-coordinates we get

−∂2t φ+ ∂2zφ= g(z)
[
qΦh
4
R̄+U ′(φ)

]
. (17)

In the region near to the horizon, in view of (16), the
right-hand side of above equation vanishes exponentially.
Hence, in the vicinity of the horizon we have

−∂2t φ+ ∂2zφ= 0. (18)

Therefore, in the near-horizon region Liouville theory gets
effectively described by free massless scalar field. Noting
that the trace of the energy-momentum tensor (8) can be
written in the form (dropping the interaction term U(φ)
as it is not important for our present purpose)

T aa =
1

g(x)
(−T00+Tzz) =−qΦh

4

[
1

g(x)
(∂2t φ− ∂2zφ)

]
,

(19)
we find that in the near-horizon limit, using the near-
horizon equation of motion (18), the trace of the
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energy-momentum tensor as defined in [6] becomes

−T00+Tzz = 0. (20)

This indicates the fact that the near-horizon theory is
conformally invariant. However, one can rewrite the right-
hand side of (19) in terms of R̄ using (17). This simply
reproduces the exact result for the trace of the energy-
momentum tensor (9). The near-horizon result is trivially
obtained to be

T aa =

(
qΦh
4

)2
R̄(xh) =−

(
qΦh
4

)2
g′′(xh). (21)

This shows that the above way of computing the trace
near the horizon leads to a nonvanishing result which is
incompatible with (20). To make the trace T aa compat-
ible with (20), we shall use the equation of motion (18)
describing free massless scalar field as the theory near the
horizon has conformal invariance. This leads to T aa = 0,
since the term in the braces in (19) vanishes as a conse-
quence of (18). Hence, in the near-horizon limit, we take
the equation of motion to be (18) with g(x) vanishingly
small but not zero. We shall consistently apply this
approximation in the subsequent near-horizon analysis.
Now we show that, though we are able to keep the

conformal invariance intact, the near-horizon theory does
not preserve the diffeomorphism invariance. For that,
we write the energy-momentum tensor (7) in the (t, z)-
coordinates as

T00(z) =
1

4

(
φ̇2+(∂zφ)

2
)
− qΦh
4

(
∂2zφ−

g′(x)
2
∂zφ

)
, (22)

T0z(z) =
1

2
φ̇ ∂zφ− qΦh

4

(
∂zφ̇− g

′(x)
2
φ̇

)
, (23)

Tzz(z) =
1

4

(
φ̇2+(∂zφ)

2
)
+
qΦh
4

(
−φ̈+ g

′(x)
2
∂zφ

)
, (24)

where the “dot” represents the derivative with respect
to time and the “prime” represents the derivative with
respect to x. Note that once again we do not consider
the interaction term U(φ) since it is not important
for our purpose. Now, let us consider the near-horizon
approximation of the above equations. First, we note
that T00, T0z and Tzz contain a term proportional to a
derivative of the metric function. Therefore, it will be
inappropriate to substitute the form of the metric function
to first order in (x−xh) (see (14)) in (22)–(24), rather, we
have to take into account the next-order term in the metric
expansion (13). In other words, we put

g′(x) =
2

βH
+ g′′(xh)(x−xh) (25)

in the expressions for T00, T0z and Tzz. Then we have

T00(z) =
1

4

(
φ̇2+(∂zφ)

2
)

−qΦh
4

(
∂2zφ−

1

2

[
2

βH
+ g′′(xh)(x−xh)

]
∂zφ

)
,

(26)

T0z(z) =
1

2
φ̇ ∂zφ

−qΦh
4

(
∂zφ̇− 1

2

[
2

βH
+ g′′(xh)(x−xh)

]
φ̇

)
,

(27)

Tzz(z) =
1

4

(
φ̇2+(∂zφ)

2
)

+
qΦh
4

(
−φ̈+ 1

2

[
2

βH
+ g′′(xh)(x−xh)

]
∂zφ

)
.

(28)

Further justification for this approximation will become
clear in the subsequent discussion.
We move on to compute the covariant divergence of the

energy-momentum tensor (26)–(28). This can be written
as

∇̄aT ab =Λac∇̄aTcb, (29)

where, Λab is the metric in the (t, z)-coordinates
2. For

b= t, we obtain

∇̄aT at =− 1

g(x)

[
1

2
φ̇(φ̈− ∂2zφ)−

qΦh
8
g(x)g′′(xh)φ̇

]
. (30)

It is worth mentioning now that rewriting the first term
in (30) in terms of R̄ using the exact equation (17) yields
a structure that precisely cancels the second term in
(30) thereby leading to a vanishing covariant divergence
of the energy-momentum tensor. This way, however, the
effects of the near-horizon approximation are bypassed and
the exact result is expectedly reproduced. This is just
the analogue of computing the trace (21) by using the
exact equation of motion (17). In order to systematically
implement the near-horizon approximation that would be
consistent with getting a vanishing trace (20) [6], we adopt
the previous interpretation, that is take the equation of
motion as (18) with g(x) vanishingly small but not zero.
This leads to

∇̄aT at = qΦh
8
g′′(xh)φ̇. (31)

For b= z, we obtain (after using the near-horizon equation
of motion (18)):

∇̄aT az = qΦh
8
g′′(xh)∂zφ. (32)

The above equations can be compactly written as

∇̄aT a b =
qΦh
8
g′′(xh)∂bφ. (33)

It is important to observe that the near-horizon equation
of motion for φ (18) (which is different from the equation
of motion satisfied by φ away from the horizon (6)) plays
an important role in the derivation of (33). We therefore

2Note that in the (t, z)-coordinates, the metric (12) reads ds2 =
−g(x) dt2+ g(x) dz2. Hence, Λtt =−g(x) and Λzz = g(x).
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conclude that the classical Liouville theory, when consid-
ered in the region near to the horizon, respects confor-
mal symmetry but it does not preserve the diffeomorphism
invariance.
This is a new result in our paper. We find that

though we are able to keep the conformal invariance
intact, the near-horizon theory does not preserve the
diffeomorphism invariance thereby clearly pointing out
the interplay between the diffeomorphism and conformal
invariance exhibited in the case of black holes in the
two-dimensional classical Liouville theory. To put this
result in a proper perspective, we recall the findings of [6]
where it was shown that the conformal symmetry near
the horizon of the black hole leads to a Virasoro algebra
among the Fourier transform of specific combinations of
the components of the energy-momentum tensor. Here,
we show that the Virasoro algebra which is a reflection
of conformal symmetry near the horizon of the black hole
can also be understood as the breaking of diffeomorphism
symmetry near the black-hole horizon.
This observation is similar to that of quantum anom-

alous theories. Indeed, when we quantize the scalar field
theory on general curved background, the trace of 〈Tab〉
turns out to be nonzero. In particular, for the nonchiral
theory in 1+1 dimensions, 〈T aa〉 is proportional to the
curvature scalar. However, the regularization adopted to
compute the trace anomaly preserves the diffeomorphism
invariance. One may adopt a different type of regulariza-
tion which spoils the diffeomorphism symmetry but keeps
conformal symmetry intact. It turns out that in D= 2
dimensions there is no regularization prescription which
preserves the conformal as well as diffeomorphism invari-
ance simultaneously [1,2].
As a side remark we mention that it might be possible

to write an improved stress tensor from (33) that is
conserved,

T̂ a b = T
a
b−
qΦh
8
g′′(xh)δabφ. (34)

However, as is easily observed, this tensor is no longer
traceless, since

T̂ a a =
qΦh
4
R̄φ. (35)

Consequently, simultaneous imposition of both Ward iden-
tities is not feasible. This shift of anomaly by using coun-
terterms is more akin to what is done in quantum field
theory. A similar phenomenon for the Liouville theory was
also observed, though in a different context [14].
The fact that in the region near the horizon, the energy-

momentum tensor is not covariantly conserved (33) can
also be inferred by computing the classical Poisson algebra
among the various light-cone components of the energy-
momentum tensor. It turns out that the Poisson algebra
does not close which in general, is related to the breaking
of either diffeomorphism or conformal invariance. This in
fact justifies our approximation of keeping terms up to
first order in (x−xh) in g′(x) (25) in the evaluation of
the covariant divergence of the energy-momentum tensor.
It is important to note that if we compute g′(x) from the

near-horizon expansion of g(x) (14), it would finally lead
to the conservation of the energy-momentum tensor. This
would be in direct clash with the non-closure of the Poisson
algebra.
We begin our analysis of the classical Poisson algebra

by writing (26)–(28) in the light-cone coordinates:

x+ =
1√
2
(t+ z),

x− =
1√
2
(t− z).

(36)

Then we have

T++ = T00+T0z

=
1

4

(
φ̇+ ∂zφ

)2
− qΦh
4

(
∂2zφ+ ∂zφ̇

−1
2

[
2

βH
+
g′′(xh)
2
(x−xh)

]
(∂zφ+ φ̇)

)
, (37)

T−− = T00−T0z

=
1

4

(
φ̇− ∂zφ

)2
− qΦh
4

(
∂2zφ− ∂zφ̇

−1
2

[
2

βH
+
g′′(xh)
2
(x−xh)

]
(∂zφ− φ̇)

)
. (38)

Next, we give the basic Poisson brackets among the
canonical variables [6]

{φ(z), φ̇(z′)}= δ(z− z′), (39)

{φ(z), φ(z′)}= 0, (40)

{φ̇(z), φ̇(z′)}= 0. (41)

The Poisson algebra between T++(z) and T++(z
′) there-

fore reads

{T++(z), T++(z′)}= (T++(z)+T++(z′)) ∂zδ(z− z′)

+
q2Φ2h
8

[
−∂3zδ(z− z′)+

g′(x)g′(x′)
4

∂zδ(z− z′)

+
1

2
[g′(x)− g′(x′)]∂2zδ(z− z′)

]
(42)

with g′(x) given by (25). Note that here, we have only
given the Poisson bracket among T++ components of
the EM tensor because the algebra between T−−(z) and
T−−(z′) is identical in structure, while the Poisson bracket
among T++ and T−− is zero. Now neglecting terms
proportional to (x−xh) in the above algebra leads to
{T++(z), T++(z′)}= (T++(z)+T++(z′)) ∂zδ(z− z′)

+
q2Φ2h
8

[
−∂3zδ(z− z′)+

1

β2h
∂zδ(z− z′)

]
. (43)

This algebra would have been the same if we had substi-
tuted g′(x) = 2

βH
in (22)–(24). However, in that case we

11003-p4



Aspects of diffeomorphism and conformal invariance in classical Liouville theory

would not have found any violation in the conservation of
the energy-momentum tensor (33) which would be incon-
sistent with the fact that the Poisson algebra (43) does
not close.
For the sake of completeness, we now move on to

investigate the Virasoro algebra. The Virasoro generator
is defined as [6]

Ln =
L

2π

∫ L/2
L/2

dz T++(z)e
2iπnz/L. (44)

From the algebra given in (43), we compute the algebra
between the Virasoro generators which yields

{Ln, Lm}= (n−m)Ln+m+ c
12
n

(
n2+

(
L

2πβh

)2)
δn+m,0.

(45)

This is the expression for the classical Virasoro algebra
with the central charge c= 3πq2Φ2h [6].

Discussions. – In this article we have studied thor-
oughly the interplay between the diffeomorphism and
conformal symmetries for black holes in the D= 2 classi-
cal Liouville theory. The energy-momentum tensor derived
from the D= 2 classical Liouville action, in general, is
covariantly conserved. However, the trace of the energy-
momentum tensor becomes nonzero leading to violation of
the conformal invariance.
In the region near to the horizon, the Liouville theory

shows interesting behavior. In the vicinity of the horizon
we expand the metric function about the horizon and
keep only the leading-order terms. In this approxima-
tion, the equations of motion for the Liouville field
takes the form of D= 2 free, massless Klein-Gordon
equation and eventually makes the energy-momentum
tensor traceless. Hence, in the vicinity of the horizon
the Liouville theory is conformally invariant. However,
we observe that, in the near-horizon limit the energy-
momentum tensor is not covariantly conserved. In
fact, we showed that the covariant divergence of the
energy-momentum tensor is proportional to the curvature
scalar. This fact is quite well known in the context
of the quantization of fields on the general curved
background. Classically, the energy-momentum tensor,
of the field theory under consideration, is traceless and
also covariantly conserved. However, during the process
of quantization, either there is a trace or diffeomorphism
anomaly, depending upon the choice of the regularization.
It is impossible to preserve both, the conformal as well as
the general coordinate (diffeomorphism) invariance [1,2].
In this paper, for the classical Liouville theory, we have a
similar kind of behavior of the energy-momentum tensor.
Away from the horizon, the classical energy-momentum
tensor is covariantly conserved signalling the presence of
diffeomorphism invariance but the conformal symmetry
is lost due to a nonvanishing trace. Near the horizon, on
the contrary, the diffeomorphism symmetry is broken but
the conformal symmetry is intact. This interplay is a new

finding in the context of the classical Liouville theory in
the near-horizon approximation.
Another feature in our paper is that the Virasoro

algebra which is a reflection of the conformal invariance
near the horizon of the black hole can also be understood
as the breaking of the diffeomorphism invariance near the
black-hole horizon.
Here we would like to mention that similar results,

though in a different context, were discussed in [14]. To be
more specific counterterms were added in the parentD= 2
Liouville action in order to restore Weyl invariance which
however, breaks diffeomorphism symmetry. The point is
that counterterms, taken in [14], are a manifestation of
regularization ambiguities. However, the issue of regular-
ization is meaningful only in the quantum field theory.
In our example no counterterms are necessary. The inter-
play of the symmetries occurs very naturally with the
near-horizon results displaying one feature while those
away from the horizon display another feature. The whole
analysis, either at the technical or conceptual level, is
completely classical.
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