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Abstract – There exists a large class of generally covariant metric Lagrangians that contain only
local terms and describe two propagating degrees of freedom. Trivial examples can be be obtained
by applying a local field redefinition to the Lagrangian of general relativity, but we show that
the class of two propagating degrees of freedom Lagrangians is much larger. Thus, we exhibit a
large family of non-local field redefinitions that map the Einstein-Hilbert Lagrangian into ones
containing only local terms. These redefinitions have origin in the topological shift symmetry
of BF theory, to which GR is related in Plebański formulation, and can be computed order by
order as expansions in powers of the Riemann curvature. At its lowest non-trivial order such a
field redefinition produces the (Riemann)3 invariant that arises as the two-loop quantum gravity
counterterm. Possible implications for quantum gravity are discussed.
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Loop divergences in quantum gravity require higher-
derivative counterterms to be added to the Lagrangian
[1,2]. Such higher-derivative terms typically introduce new
propagating degrees of freedom (DOF) that generally lead
to instabilities, see [3] for an emphasis of this point. The
only known way to avoid these instabilities is to have a
well-behaved underlying theory describing the new DOF,
for example string theory. The higher-derivative metric
Lagrangian is then an effective one obtained by integrating
out some underlying non-gravitational DOF. In this letter
we show that there exists a potentially attractive alter-
native: higher-derivative counterterms required to absorb
infinities can be added to the gravitational Lagrangian
without adding new degrees of freedom. For countert-
erms that can be disposed off by a local field redefi-
nition this statement is essentially obvious, see below.
The main purpose of this letter is to show that it
also holds for more interesting counterterms, e.g. the
term (Riemann)3 that arises in quantum gravity at two
loops [2].
Field redefinitions play an important role in our

construction, so we start by briefly recalling some relevant
facts. Quantum gravity, with its negative mass dimension
coupling constant, is non-renormalizable in the sense that
an infinite number of counterterms is required to absorb
all arising divergences. However, while in a typical renor-
malizable theory transformations that absorb infinities
are limited to field and coupling constant multiplicative
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renormalizations, the field redefinition freedom available
in a theory with a dimensionful coupling is considerably
larger. Thus, in the case of (pure, i.e. with no matter
couplings) quantum gravity one can perform field redefi-
nitions of the schematic type h→ h+∑nGn∂2nh+ . . . ,
where h is the graviton field, G is Newton’s constant,
and dots denote terms of higher order in the metric
perturbation. The power of G here is as relevant for
the case of 4 spacetime dimensions, but similar field
redefinitions, with an appropriate modification of the
power of G are available in other dimensions as well.
Such field redefinitions, being local, are known not to
change the S-matrix of the theory, see, e.g., [4], sect. 2,
as well as [5], sect. 10, for a discussion of this point.
The availability of these field redefinitions implies that
many of the arising counterterms are unphysical in the
sense that they can be disposed off without any effect
on the S-matrix. An extreme example of this situation
arises when, in spite of divergences being present, they
can all be removed by local field redefinitions without
affecting the S-matrix. In this case one says that the
theory is (on-shell) finite. An example of a finite but
power-counting non-renormalizable theory is given by
pure quantum gravity in 3 spacetime dimensions.
A celebrated result of [1] is that one-loop divergences

of pure quantum gravity in 4 spacetime dimensions can
be removed by a local field redefinition and so the theory
is one-loop finite. It was for some time hoped that the
finiteness may persist to all loops, but an explicit two-
loop computation [2] showed that the term (Riemann)3
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that is not removable by a local field redefinition is needed
to absorb the divergences arising.
On the other hand, non-local redefinitions, i.e. involv-

ing negative powers of �= ∂µ∂µ, generically do change
the S-matrix. Still, an appropriate ghost action can be
introduced to offset their effect, see [5]. However, such
field redefinitions typically map a local action to a non-
local one, and are thus uninteresting for the purpose
of eliminating local counterterms. Indeed, the simplest
example is given by the free-field Lagrangian (1/2)(∂µφ)

2,
which, after a redefinition φ→ φ+(O/�)φ, where O is a
local operator, goes into a Lagrangian containing 1/�.
Our last introductory remark is terminological.

Throughout this paper the term “local Lagrangian” refers
to a Lagrangian that contains only local terms, i.e. does
not contain 1/�. However, an infinite number of such
local terms can be present. Thus, a Lagrangian

1

2
φ
�

1− l2�φ=
1

2
φ(�+ l2�2+ l4�3+ . . .)φ, (1)

where l is a parameter with dimensions of length, will be
referred to as local. The term “non-local” is reserved for
non-locality that cannot be expanded in powers of local
operators.
We now remark that the Lagrangian on the right-hand-

side of (1), if truncated to any finite power of �, describes
many propagating modes. This can be seen either from
the fact that it is higher-order in time derivatives, and so
one needs more initial data to specify the evolution of the
system. Alternatively, this follows from the fact that there
are many momentum space poles in the arising propaga-
tor. However, when the series is not truncated, the theory
describes a single propagating mode, in fact, a single mass-
less field. This can be seen either by rewriting it in a
second-derivative form by introducing an auxiliary field,
see (7), and then performing the Hamiltonian analysis, or
from the fact that the only pole of the propagator arising
from (1) is that corresponding to a massless particle. Alter-
natively, this follows from the fact that the Lagrangian (1)
can be obtained from that of a single massless field via a
local (i.e. not containing 1/�) field redefinition.
The simple Lagrangian (1) provides a good illustration

of possibilities in the case of gravity. As in the case
with truncated (1), when adding a finite number of
higher-derivative terms to the gravitational Lagrangian
one typically changes the dynamical content of the theory,
which typically leads to instabilities, as emphasized in [3].
However, one can also add higher-derivative terms without
adding new propagating DOF provided they are arranged
as e.g. in (1), i.e. provided the new terms are removable
by a local field redefinition. This shows that the class
of local (in our sense defined above) generally covariant
gravity Lagrangians describing two propagating DOF is at
least as large as that obtainable from the Einstein-Hilbert
Lagrangian by local field redefinitions. The purpose of this
letter is to show that this set is much larger.

We now remark that in the case of gravity (in 4 space-
time dimensions) there exists an (infinite-parameter)
family of non-local field redefinitions that map the
Einstein-Hilbert Lagrangian into a generally covariant
metric Lagrangian containing only local terms. The
redefinition can be computed order by order in pertur-
bation theory as follows. At lowest order, it is the local
transformation

hµν→ hµν +αRµν +βηµνR (2)

that produces RµνRµν and R
2 invariants. Here ηµν is

the Minkowski metric, and Rµν , R are the Ricci tensor
and scalar for the perturbation hµν , respectively. At the
next order our field redefinition produces the (Riemann)3

invariant as well as other on-shell vanishing ones and is
given by

hµν→ hµν + γ�∂
α∂βR γδ

µα Rνβγδ, (3)

plus a set of local terms. The reason why (3) produces

γ

4

∫
R ρσ
µν R αβ

ρσ R µν
αβ (4)

is that this quantity can be written as

∫
Eµν γ�∂

α∂β
(
R γδ
µα Rνβγδ −

1

2
ηµνR

ργδ
α Rβργδ

)
, (5)

where Eµν =Rµν − 12ηµνR. This is checked using the easily
verifiable identity

∂[α∂
[βR

ν]
µ] =

1

4
�R βν

αµ , (6)

that holds to first order in the perturbation field. Note
that the reason why the last term in brackets in (5) was
not included in (3) is that it is proportional to ηαβ , and
thus gives rise to a local term.
The structure of the field redefinition at higher orders

is similar to (3) in that the non-local operator ∂α∂β/� is
applied to a rank-4 tensor constructed from an appropriate
power of the Riemann curvature tensor (and its covariant
derivatives), plus a set of local terms. Importantly, at
higher orders there are also terms containing higher
negative powers of �. These are needed to eliminate
terms arising as powers of lower order non-localities. The
above prescription can be carried out order by order, but
this becomes technically difficult at higher orders. Below
we present an alternative description of the same field
redefinition that guarantees that it can be extended to any
order and gives an algorithmic procedure for computing it.
At every order the non-local field redefinition sketched

introduces a set of parameters that, after it is applied to
the Einstein-Hilbert Lagrangian, translate into parameters
of the arising local metric Lagrangian. When truncated
to any given order, the Lagrangian one obtains contains
many new DOF stemming from its higher-derivative

30002-p2



Metric Lagrangians with two propagating degrees of freedom

nature. However, the complete Lagrangian with its infi-
nite number of local terms describes just two propagating
DOF, similar to what happens in the case of theory (1).
To see this in the case of gravity we must introduce a
different and at first unrelated description of this class of
Lagrangians.
In the retrospect, the idea is to introduce certain auxil-

iary, i.e. non-propagating fields, so that the gravitational
Lagrangian with its infinite number of terms can be rewrit-
ten as a simple second-order in derivatives theory. Thus,
e.g. in the case of (1), the theory can be rewritten in
a second-order form by introducing a new field χ and
considering the following Lagrangian:

1

2
φ�φ+ 1

2
χ(�−m2)χ+χ�φ. (7)

The field χ can be seen to be non-dynamical. Integrating
it out (via its field equation) gives back (1) with l2 =m−2.
A similar, but much more involved scheme with auxiliary
fields is at play in the case of gravity. In this case the
realization is particularly elegant as the metric and the
new auxiliary fields are combined into a single entity: a
Lie-algebra–valued 2-form, see below.
We now proceed with such an alternative description of

the two propagating DOF metric Lagrangians. It is
provided by an infinite-parameter family of deforma-
tions of general relativity first described in [6], building
upon works [7–10]. One starts with an observation [7]
that (complexified) Einstein’s general relativity can be
rewritten as a generally covariant theory of an SO(3,C)
connection. This suggests generalizations, leading to an
infinite-parameter family [6] of theories describing two
propagating degrees of freedom (DOF) and containing
GR. These two propagating DOF gravity theories can
be rewritten in metric terms and can be shown to be
obtainable from GR precisely by the above non-local field
redefinitions.
These deformations of GR can be described compactly

as follows. Let Ai, i= 1, 2, 3 be an SO(3,C) connection
and F i = dAi+(1/2)εijkAj ∧ Ak be its curvature two-
form. The action of the theory is just the most general
generally covariant action that can be constructed for
Ai. Thus, consider the 4-form F i ∧ F j . Choosing an
arbitrary volume 4-form (vol) we can write F i ∧ F j =
(vol)Ωij , with Ωij being defined only modulo rescalings
(vol)→ α(vol), Ωij→ (1/α)Ωij . Introduce a scalar-valued
function f(X) of 3× 3 symmetric matrices Xij that
is SO(3,C)-invariant f(OXOT ) = f(X), O ∈ SO(3,C),
holomorphic, and homogeneous of degree one f(αX) =
αf(X). This function can be applied to the 4-form F i ∧ F j
with the result being a 4-form f(F i ∧ F j) = (vol)f(Ω),
independent of which volume 4-form is used. Thus, we
can write a generally covariant and gauge-invariant action
as follows:

S[A] =

∫
f(F i ∧F j). (8)

It can then be shown that for a generic f(·) this gives
a theory that describes 2 (complex) propagating DOF.
This can be seen by noting that the phase space of this
theory is parametrized by pairs (spatial projection of the
connection, conjugate momentum). The theory is diffeo-
morphism and gauge-invariant which means that there
are 4+3 first-class constraints acting on the phase space.
With the configuration space being 3× 3 dimensional, this
leaves 2 physical DOF. It can also be shown, see [7], that
general relativity belongs to the class (8) with the function
f(·) being the δ-function projecting onto

TrΩ2 =
1

2
(TrΩ)2. (9)

Note that the clause about f(·) being generic is important,
for the Lagrangian TrF ∧ F , which is also in the class (8),
is a total divergence and corresponds to a theory without
propagating DOF. The description of the theory given
here is new, but can be shown to be equivalent to one
given in [6].
As was realized in [11,12], the theory (8) can be put

into a form that makes the spacetime metric it describes
more explicit. In the retrospect, this is done via a standard
“duality” trick of introducing a set of new fields that
are later taken to be fundamental, with the fields of the
original formulation to be integrated out. The new fields
in our case are two-form fields Bi that are valued in the
Lie-algebra of SO(3,C) . The new action is given by

S[B,A] =

∫
Bi ∧F i− 1

2
V (Bi ∧Bj). (10)

Here V (·) is again a holomorphic, SO(3,C)-invariant,
homogeneous function of order one so that it can be
applied to the 4-form Bi ∧ Bj . Integrating the two-form
field Bi out by solving its (algebraic) field equations one
gets back (8) with f(·) being an appropriate Legendre
transform of V (·). One can now take the two-form field
Bi to be fundamental, and eliminate Ai completely by
solving its field equations that are algebraic. This converts
(10) into a second-order theory for the two-form field Bi.
The spacetime metric described by the theory becomes

almost manifest in the two-form field formulation (10).
Thus, it can be shown that the theory is about the
spacetime (conformal) metric with respect to which the
set of two-forms F i (or, equivalently, Bi) is self-dual. It is
not hard to show that there is a unique such (conformal)
metric, see, e.g., [13]. Explicitly, this metric is given by

√−ggµν ∼ εijkBiµαBjνβBkρσ ε̃αβρσ. (11)

Introducing the conformal metric (11), the action (10) can
be explicitly rewritten in a second-order form as that of the
metric plus a set of auxiliary non-propagating fields. This
is done by introducing a set of special self-dual “metric”
two-forms Σi that satisfy

Σi ∧Σj ∼ δij . (12)
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These forms are easily constructed by introducing a tetrad
θI , I = (0, i) for the metric, and taking the self-dual part
of the two-form θI ∧ θJ given by

Σi = iθ0 ∧ θi− 1
2
εijkθj ∧ θk. (13)

It can be shown that the knowledge of two-forms that
satisfy (12) is equivalent to the knowledge of the metric
with respect to which these forms are self-dual. A general
self-dual two-form Bi can then be written as

Bi = bijΣ
j , (14)

where bij are arbitrary scalars. The theory (10) with

the connection Ai eliminated via its field equations then
becomes a second-order theory of the metric described
by Σi and the non-propagating scalars bij . A simple
phase space analysis shows that the theory contains only
two propagating DOF. The scalars bij are analogs of χ
in (7) and can be integrated out to produce a purely
metric theory. This leads to a Lagrangian given by an
infinite expansion in terms of local curvature invariants,
which describes two propagating DOF by construction.
The above discussion was phrased in terms of complex
spacetime metrics, but appropriate reality conditions can
be imposed, and the story repeats itself for real Lorentzian
signature metrics, see [14].
Thus, the class of theories (8) provides a compact

description of an infinite-parametric set of generally
covariant local metric Lagrangians with two propagating
DOF. As an explicit computation in [14] shows, at third
order in curvature the arising Lagrangians contain the
(Riemann)3 term. Thus, the described set of Lagrangians
is larger than that obtainable from GR by local field
redefinitions. The story for gravity is thus similar to
that for (1), (7) in that non-propagating scalars of a
second-order theory are integrated out to produce a
theory with an infinite number of higher-derivative terms.
The gravity story is, however, much more non-trivial than
that in the simple example (1), (7) for integrating out the
gravitational analogs of χ produces a theory that is not
related to GR by a local field redefinition.
Still, there are non-local field redefinitions that

relate our Lagrangians to GR. To describe these we
note that in the formulation (10) the first BF term
possesses a large symmetry Bi→Bi+Dηi, where ηi is
a Lie-algebra–valued one-form, and D is the covariant
derivative with respect to the connection Ai. A subgroup
of this symmetry group is formed by spacetime diffeo-
morphisms. The second, potential term of the action
is only invariant under this diffeomorphism subgroup,
and this is the reason why the above “topological shift”
transformation is not a symmetry of the whole action.
This is also the reason why (10), unlike BF-theory, has
propagating DOF.
The topological shift transformation described can be

used to map (10) to the Einstein-Hilbert action plus a

simple potential term for a set of scalars that are decoupled
from the metric. An analog of this transformation for the
simple system (1), (7) consists in rewriting (7) as

1

2
(φ+χ)�(φ+χ)− m

2

2
χ2. (15)

A new dynamical field φ̃= φ+χ is then described by the
usual massless scalar field Lagrangian, and the field χ is
set to zero by its field equation.
The fact that a (non-local) analog of (15) is at play

in the case of linearized gravitational theory (10) was
noted in [15]. To see this for the full theory, we use the
observation of [16] that the Einstein-Hilbert Lagrangian
can be written in BF form in terms of the two-forms
Σi constructed from the metric. We then note that the
topological shift symmetry can be used to transform
any two-form field Bi into a “metric” one Σi =Bi+Dηi

satisfying (12). A detailed demonstration of this fact
is beyond the scope of this letter, but it is not hard
to see that the number of parameters available in the
one-form field ηi, modulo the diffeomorphisms and the
“gauge” ηi→ ηi+Dφi, where φi is a Lie-algebra–valued
zero-form, matches precisely the number of “metricity”
equations (12) to be satisfied. It can also be shown, at
least perturbatively around the Minkowski background,
that the two-form Σi arising this way is unique. This
discussion shows that the first BF-term of the action (10)
can be written as the Einstein-Hilbert one for the metric
obtained from Bi by the topological shift symmetry. The
second term in (10) then becomes a potential for the non-
propagating scalars contained in Bi, similar to the last
term in (15). By their field equations these scalars are set
to a value corresponding to a minimum of the potential,
and decouple, which leaves one with the Einstein-Hilbert
action (with a cosmological constant whose value is given
by the minimum of V (·)) for the metric described by Σi.
This shows that there exists a field redefinition that maps
(10) into the Einstein-Hilbert action. The field redefinition
in question involves solving a differential equation for
the shift one-form parameter ηi, and is thus non-local,
unlike its simple analog (15). It can be computed order
by order perturbatively expanding the metric(s) around
the Minkowski background. The end result is given by
the transformation that was described in the beginning of
this letter, with parameters of the transformation related
to those of the potential V (·), see [14] for details.
To summarize, we have seen that the set of generally

covariant local metric Lagrangians describing two propa-
gating DOF is larger than the one obtainable from GR
by local field redefinitions. We have exhibited an infinite-
parametric class (8) of such (not obtainable by local field
redefinitions) two propagating DOF Lagrangians, but do
not know whether this describes all such Lagrangians.
While any two propagating DOF metric Lagrangian (other
than that of GR) necessarily contains an infinite set
of higher-derivative local terms, the set of Lagrangians
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exhibited in this letter admits a very compact second-
order in derivatives description (10) once certain auxiliary
fields are introduced. Any of the Lagrangians described
is obtainable from GR by special non-local field redefin-
itions that stems from the topological shift symmetry of
the BF-part of the action (10).
Let us conclude by discussing what the existence of an

(infinitely) large class of two propagating DOF metric
Lagrangians may imply for the problem of quantum
gravity. The fact that the (Riemann)3 counterterm
needed at two loops is contained in our two propagating
DOF Lagrangians suggests that it may be possible to
device a renormalization scheme for gravity so that the
counterterm-corrected Lagrangian remains within two
DOF class at every order of perturbative expansion.
For this to be possible the class of theories (8) must be
closed under renormalization, which appears plausible,
since the Lagrangian in (8) is just the most general one
compatible with gauge and diffeomorphism invariance.
Such a renormalization scheme, if possible, would give a
quantum theory of gravity with two propagating DOF,
which would be in striking contrast with other quantum
gravity scenarios (e.g. string theory) that typically
introduce new DOF.
If this scenario was possible, one would face a ques-

tion about implications of the non-local topological shift
symmetry described. While generically non-local field
redefinitions do change the S-matrix, our redefinitions are
certainly of a very special nature since a local action is
mapped again into a local one. Therefore, the general
conclusion has to be carefully re-examined. Preliminary
considerations, see the discussion in [14], suggest that our
non-local transformations might not affect the S-matrix. If
this was so, then all quantum divergences were disposable
without affecting the S-matrix, and the quantum theory
would be finite. It is of considerable interest to see if this
vision can be realized.
The story described is that for pure, i.e. not coupled

to any matter sources, gravity. Indeed, coupling to usual-
type matter essentially removes the field redefinition

freedom. However, similarly to how the one-loop finiteness
result [1] extends to special-matter couplings provided by
supergravity theories, our story may also be applicable
to gravity coupled to at least certain types of matter,
see [17].
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