
                          

Ionic mixtures in two dimensions: From regular to
empty crystals
To cite this article: L. Assoud et al 2010 EPL 89 36001

 

View the article online for updates and enhancements.

You may also like
CONFIRMATION OF A CORRELATION
BETWEEN THE X-RAY LUMINOSITY
AND SPECTRAL SLOPE OF ACTIVE
GALACTIC NUCLEI IN THE CHANDRA
DEEP FIELDS
C. Saez, G. Chartas, W. N. Brandt et al.

-

Identification, prevalence and intensity of
ectoparasite in sand lobster (Panulirus
homarus) cultivated in floating cages
(floating net cage) and bottom cage
(bottom cage)
G Septian, M F Ulkhaq and Kismiyati

-

A Light Curve Analysis of Recurrent and
Very Fast Novae in Our Galaxy,
Magellanic Clouds, and M31
Izumi Hachisu and Mariko Kato

-

This content was downloaded from IP address 18.119.131.72 on 24/04/2024 at 16:58

https://doi.org/10.1209/0295-5075/89/36001
/article/10.1088/0004-6256/135/4/1505
/article/10.1088/0004-6256/135/4/1505
/article/10.1088/0004-6256/135/4/1505
/article/10.1088/0004-6256/135/4/1505
/article/10.1088/0004-6256/135/4/1505
/article/10.1088/0004-6256/135/4/1505
/article/10.1088/1755-1315/1273/1/012026
/article/10.1088/1755-1315/1273/1/012026
/article/10.1088/1755-1315/1273/1/012026
/article/10.1088/1755-1315/1273/1/012026
/article/10.1088/1755-1315/1273/1/012026
/article/10.1088/1755-1315/1273/1/012026
/article/10.1088/1755-1315/1273/1/012026
/article/10.3847/1538-4365/aac833
/article/10.3847/1538-4365/aac833
/article/10.3847/1538-4365/aac833


February 2010

EPL, 89 (2010) 36001 www.epljournal.org

doi: 10.1209/0295-5075/89/36001

Ionic mixtures in two dimensions: From regular to empty crystals

L. Assoud, R. Messina and H. Löwen
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Abstract – The ground state of a two-dimensional ionic mixture at zero pressure composed of
oppositely charged spheres is determined as a function of the size asymmetry by using a penalty
method. The cascade of stable structures includes square, triangular and rhombic crystals as
well as “empty” crystals made up of dipoles and chains, which have a vanishing number density.
Thereby we confirm the square structure, found experimentally on charged granulates, and predict
new phases detectable in experiments on granular and colloidal matter.
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Predicting the crystalline structures from first prin-
ciples is one of the key problems in condensed-matter
physics, material science, chemistry, geophysics and poly-
mer physics [1]. For three-dimensional ionic crystals [2,3],
it is common textbook knowledge [4] that there are three
basic equimolar structures whose stability depends on
the ratio of the ion radii. For increasing asymmetry in
the radii, the corresponding stability sequence involves the
cesium-chloride, sodium-chloride, and zincblende struc-
tures. As indicated by the names, these structures are real-
ized in nature for the (ionic) salt crystals CsCl, NaCl and
ZnS, respectively, but they show also up for a number of
other equal-valency salt crystals and for mesoscopic oppo-
sitely charged colloidal particles which are suspended in
a strongly deionized solvent [5–7]. The stability is ratio-
nalized by minimizing the Madelung potential energy per
particle pair with respect to various periodic equimolar
candidate lattices at zero temperature and zero pressure1.
In two spatial dimensions, a similar problem arises

by exploring the ground-state structure of ionic crystal
monolayers in a model of oppositely charged disks with
different radii. In fact, three different realizations of two-
dimensional ionic crystals are possible on microscopic,
mesoscopic and macroscopic length scales. First of all,
crystalline sheets of molecular salts can be deposited
on smooth substrates by using, e.g., electrochemical
methods [8]. Secondly, oppositely charged colloidal

1Zero pressure is a very general case: Here the state which is
formed is in coexistence with a vacuum state. Thereby, zero pressure
covers a broad range of prescribed concentrations.

particles [5,6] can be confined to a single layer, e.g., by
using laser-optical traps [9] or suspending them at a
flat fluid-fluid interface [10]. Finally, there are granulate
systems of millimeter-sized metallic balls which are
oppositely charged and self-organize on a macroscopic
plate into crystalline arrays [11,12]. It is important to
understand the different crystalline sub-structures both
from a fundamental point of view and for applications. For
example, a control of the composite structures of colloidal
crystals leads to new photonic [13] or phononic [14] band-
gap materials, to molecular-sieves [15], to micro- and
nano-filters with desired porosity [16] and to nanowires
composed of individual particle strings [17]. It allows to
steer protein crystallization [18].
Despite its fundamental importance, the stability of

two-dimensional ionic monolayers has not been addressed
for asymmetrically sized ions. Previous theoretical studies
have mainly focused on ionic criticality [19] at finite
temperature and on equal ion size [20]. In this letter,
we predict the ground-state structures for two different
relevant set-ups of oppositely charged spheres: in the first,
all centers of mass belong to a common plane which
corresponds to a situation where both species are confined
in an interface [16]. In the second set-up, all particle
surfaces touch a common plane corresponding to spheres
in contact with the same planar substrate where they are
confined by, e.g., gravity [11,12]. Using a novel penalty
method, a wealth of different stable structures is found.
These include periodic crystalline arrays, on the one hand,
with square, triangular and rhombic unit cells and with
both touching and non-touching large spheres. On the
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other hand, so-called “empty” crystals of dipoles and
chains with three different internal chain structures are
also stable for strong size asymmetries in the substrate
set-up. In analogy to “empty liquids” [21], we refer to
an “empty crystal” as a crystal with vanishing number
density, or equivalently having at least one diverging
lattice constant. All these structures are detectable in
experiments on granular and colloidal matter and in
adsorbed crystalline layers of molecular salts.
The model system used in our study are equimolar 1 : 1

mixtures of large ions (component A) with radius RA
carrying a positive charge qA and small ions (component
B) with radius RB carrying a negative charge qB (|qA|=
|qB | ≡ q) such that the whole system is electroneutral.
The size asymmetry 0�RB/RA � 1 is denoted with σ.
These constitutive ions interact via a pairwise potential
composed by a Coulombic and hard-core part:

uαβ(r) =

{qαqβ
r
, if r�Rα+Rβ (α, β = A orB)

∞, if r <Rα+Rβ ,
(1)

where r is the center-center distance between the ions
α and β. The stability of the crystalline structure (at
zero temperature) is ensured by steric interactions of
the hardcore form. Our objective is to determine the
stable structures at zero pressure and zero temperature
by numerical minimization of the total potential energy.
Traditional minimization schemes [22,23] typically

require a continuous pairwise potential form in order
to localize the minimum. The discontinuous hard-core
potential splits the parameter space into various distinct
regions which hampers straightforward numerical mini-
mization. For potentials which involve a hard-core part
we have developed here a new technique to overcome this
difficulty that relies on the so-called penalty method [24]
which was hitherto applied to geometric packing problems
of hard bodies. The key idea is to relax the non-overlap
condition (i.e., r�Rα+Rβ) by introducing an auxiliary
penetrable pair interaction,

vαβ(r) =
qαqβ

r
+µmax(Rα+Rβ − r, 0), (2)

where µ> 0 is a penalty parameter which is larger than the
gradient of the bare Coulomb potential at contact. This
parameter gives a finite energy penalty to any overlapping
configuration. If µ is finite but sufficiently large, the total
potential energy for the auxiliary potential vαβ(r) has
exactly the same minimal configuration as that for uαβ(r).
However, numerically the potential energy landscape is
now continuous such that standard minimization routines
like the simplex algorithm [25] can be applied. Though
the penalty technique itself is applicable to any spatial
dimensionality and hard particle shape, we exploit it
here to predict the ground state for binary hard charged
spheres.
In detail, we consider a parallelogram as a primitive

cell which contains nA A-particles and nB B-particles.

interfacial model
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Fig. 1: (Colour on-line) Stable structures of oppositely charged
spheres vs. their size asymmetry σ=RB/RA in the interface
model, where all sphere centers fall on the same plane: a) side
view, b) (scaled) energy per ion. The discontinuous transition is
indicated by a solid bar. Continuous transitions are denoted by
a broken bar. Unit cells of the corresponding stable phases are
shown, where the big (small) spheres have a radius RA (RB).

We restrict ourselves to the case nA < 3, nB < 3. This
cell can be described geometrically by the two spanning
lattice vectors a and b. The position of a particle i
(of species A) and that of a particle j (of species B)
in the parallelogram is specified by the vectors rAi =
(xAi , y

A
i ) and r

B
j = (x

B
j , y

B
j ), respectively. Thereby, the

new potential energy function that needs to be minimized
at zero pressure and zero temperature as a function of the
crystalline lattice parameters reads

Utotal =
1

2

∑
α=A,B

nα∑
i,j=1

∑
L

′
vαα(r

α
i − rαj +L)

+

nA∑
i=1

nB∑
j=1

∑
L

vAB(r
A
i − rBj +L), (3)

with L= ka+ lb where k and l are integers. The sums
over L in eq. (3) run over all lattice cells where the
prime indicates that for L= 0 the terms with i= j are to
be omitted. In order to handle efficiently the long-range
nature of the Coulomb interaction, we employed a Lekner-
summation [26].
We now consider two different set-ups, the “inter-

facial model” and the “substrate model”. In the
interfacial model which can be considered as a purely
two-dimensional situation, the centres of all spheres are
confined to a plane, see fig. 1(a) for a side view of a config-
uration. In the substrate model, on the other hand, all
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spheres are touching the same underlying plane, see
fig. 3(a) for a side view of a configuration.
For the interfacial model, the stability phase diagram

is shown versus the size asymmetry σ in fig. 1(b). By
increasing σ, the following phase cascade occurs:

�(touching, Nc = 2)→�(touching, Nc = 3)→
�(non-touching, Nc = 3)→Rh(touching, Nc = 3)→
�(touching, Nc = 4)→�(non-touching, Nc = 4),

where the symbols � and � stand for triangular and
square unit cells of the big ions A, respectively, and Rh
corresponds to rhombic unit cells, as illustrated by the
top views of the crystalline structures in fig. 1(b). The
topological aspect of these four phases can be discussed in
terms of contact between the large spheres. More specif-
ically, a “touching” configuration involves connected big
spheres while a “non-touching” one implies disconnected
big spheres, see fig. 1(b). In particular, the “touching”
triangular and rhombic phases are both characterized by
connected A-spheres in contrast to the “non-touching” �
and� structures which possess disconnected large spheres.
Additionally, the ionic coordination number Nc defined by
the number of A-particles touching a single B-particle, is
another relevant topological characteristic.
As far as the phase transitions reported in fig. 1 are

concerned, the following scenario takes place. At vanish-
ing small ion size (σ→ 0), the small ions get squeezed
between two big ions so that the three centers of mass lie
on a same line. The first transition �(touching, Nc = 2)
→�(non-touching, Nc = 3) via the special structure �
(touching, Nc = 3), characterized by an increase of the
number of contacts between A and B ions, occurs at
σ= 2√

3
− 1. This special point corresponds to a compact

triangular structure where a small ion has three contacts
with neighbouring big ions, allowing a continuous transi-
tion2. The second transition, �(non-touching, Nc = 3)→
Rh(touching, Nc = 3), occurring at σ= 0.297 is discon-
tinuous as signaled by a jump of the angle between the
two adjacent sides of the unit cell. The third transition
Rh(touching, Nc = 3)→�(non-touching, Nc = 4) via �
(touching, Nc = 4), occurring at σ=

√
2− 1 is continuous.

A remarkable feature, en passant, is the stability of the
square phase over a wide range of the size ratio σ. This
structure (at σ= 1) was already found in previous simu-
lation at finite temperature and pressure in ref. [20].
For the two non-touching phases (�, �) one can assign

two new Madelung constantsM associated to the (lattice)
electrostatic energy per molecule (i.e., a pair of ions

A and B) E =−M q2

RA+RB
. Lekner sums carried on the

appropriate lattices provide:

M� = 1.542, M� = 1.616

for the non-touching triangular and square structures,
respectively. As expected, this reported value of M� lies
2A continuous transition means that the coordinates of the

constitutive particles of the primitive cell change continuously.
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Fig. 2: (Colour on-line) Area fraction as a function of the size
aspect ratio σ=RB/RA.

perfectly between that of the one-dimensional lattice
(M1D = 2 ln 2) and that of a three-dimensional one
(MNaCl = 1.747).
Next we focus on the area fraction covered by the

spheres which is defined as φ=
π(R2A+R

2
B)

Scell
, with Scell being

the (projected) surface of the unit cell. The results are
sketched in fig. 2. In the regime σ < 2√

3
− 1 corresponding

to compact triangular structures, there is enough space to
host a small ion in the interstice offered by the touching
big ions, so that the profile is identical to that of pure

hard disk systems, where φ= π(1+σ
2)

2
√
3
. In other words the

location of the small sphere within the interstice does
not alter the area fraction. For non-touching triangular

structures ( 2√
3
− 1<σ < 0.297), φ varies like 2π(1+σ2)

3
√
3(1+σ)2

.

In the rhombic phase regime (0.297<σ <
√
2− 1), we

have φ= π(1+σ
2)(1+σ)2

8
√
σ2+2σ

. For large enough small ions, in

the square phase regime, (
√
2− 1<σ < 1), φ is given by

π(1+σ2)
2(1+σ)2 .

We finally present results for the “substrate model”
where all spheres are touching the same underlying
substrate plane, see fig. 3(a) for a side-view. The stable
crystalline structure and their energy per ion is shown
in fig. 3(b) vs. the diameter ratio σ. For increasing size
asymmetry σ, a cascade of six structures is found:

empty crystal of dipoles (non-touching, Nc = 1)→
empty crystal of chains (non-touching, Nc = 1)→
empty crystal of chains (touching, Nc = 1)→
empty crystal of chains (touching, Nc = 2)→

empty crystal of chains (non-touching, Nc = 2)→
�(non-touching, Nc = 3)→�(non-touching, Nc = 4).
In the limit of very large asymmetry (σ→ 0), dipoles per-
pendicular to the substrate plane are formed. Such paral-
lel dipoles repel each other and arrange into a crystal
with diverging lattice constant and a coordination number
Nc = 1. We call this state an “empty crystal of dipoles”.
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Fig. 3: (Colour on-line) Stable structures of oppositely charged
spheres vs. their size asymmetry σ=RB/RA in the substrate
model, where all sphere surfaces touch the same plane:
a) side view, b) (scaled) energy per ion. Discontinuous tran-
sitions between the structures are indicated by a solid bar.
Continuous transitions are denoted by a broken bar. Bottom
views of the unit cells of the corresponding stable phases are
displayed, where the big (small) spheres have a radiusRA (RB).

When σ increases, the dipole moments are getting grad-
ually tilted relative to the substrate normal until a first-
order transition towards a chain composed of dipolar pairs
occurs where the individual dipoles are non-touching and
the coordination numbers stays at Nc = 1. The distance
between neighbouring chains diverges since they are mutu-
ally repulsive. We are dealing therefore with an “empty
crystal of chains” at infinite dilution, i.e. the system is
periodic in the direction along the string but with a diverg-
ing interchain distance perpendicular to it bearing some
analogy to smectic dipolar sheets [27]. Upon increasing
σ more, the chain structure changes continuously to an
internal conformation with touching large spheres (still
with Nc = 1). This structure then transforms continu-
ously into a chain gas of non-touching large spheres with
Nc = 2. Then, there are two crystalline structures appear-
ing known already from the interface model, namely a
non-touching � and a non-touching � lattice. The former
has only a tiny stability domain while the latter is stable
along an enormous range of 0.517<σ� 1. We emphasize
the striking emergence of the gas phases in the substrate
model which are absent in the interface model and in three
dimensions.
In conclusion, we have explored the stable ground-

state structures of two-dimensional ionic crystals for an
“interface” and a “substrate” set-up at zero pressure. for

a 1 : 1 oppositely charged mixture of spheres with different
diameters, various stable crystalline phases were identified
including regular and empty crystals of chains and dipoles.
The structures of the interface set-up can be verified in
suspensions of oppositely charged particles. However in
charged colloidal suspensions the effective interactions are
typically screened over an inverse screening length κ due
to the presence of microions in the solution. For κRA� 1,
the resulting phase behaviour is similar to that found
here, while for strong and moderate screening the phase
behaviour is not known. The substrate set-up, on the other
hand, is realized for oppositely charged granular matter
on a plane. Recent experiments on oppositely charged
granular sheets with σ≈ 1 [11,12] have indeed revealed a
stable �(non-touching) configuration which is confirmed
by our calculations. More experimental investigations on
systems with higher size asymmetry are required to see
the �(non-touching) and the predicted empty crystals
of chains and dipoles. Our crystalline structures can also
be verified for molecular salts. However, here a soft core
description may be relevant which can alter the phase
diagram.
The penalty method can in principle be applied to any

other potentials which involve hard-body parts, both in
two and in three dimensions. It would be interesting to
see the stability phase diagram for different mixtures as
e.g. colloidal hard-spheres mixtures with or without non-
adsorbing polymers added.
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