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Abstract — We investigate synchronization caused by long-range hydrodynamic interaction in a
two-dimensional, substrated array of rotors with random intrinsic frequencies. The rotor mimics
a flagellated bacterium that is attached to the substrate (“bacterial carpet”) and exerts an active
force on the fluid. Transition from coherent to incoherent regimes is studied numerically, and the
results are compared to a mean-field theory. We show that quite a narrow distribution of the
intrinsic frequency is required to achieve collective motion in realistic cases. The transition is
gradual, and the critical behavior is qualitatively different from that of the conventional globally
coupled oscillators. The model not only serves as a novel example of non-locally coupled oscillators,
but also provides insights into the role of intrinsic heterogeneities in living and artificial microfluidic

actuators.

Copyright © EPLA, 2010

Introduction. — Collective oscillations of active
elements are observed in a variety of physical, chemical,
and biological systems far from equilibrium. Numerous
studies have been devoted to the mutual entrainment of
oscillators that have different intrinsic frequencies [1,2].
A class of phase oscillators with global (or mean-field)
coupling have enjoyed deep theoretical understand-
ing [1-3], while a myriad of unresolved problems still
remain on the behaviors of locally [4] and non-locally [5,6]
coupled oscillators. In particular, knowledge about
synchronization caused by long-range interactions is quite
limited [7-9], although they are ubiquitous in Nature in
the form of, e.g., gravitational, electromagnetic, elastic,
and hydrodynamic forces.

Biologically important examples of long-ranged
synchronization are provided by swimming micro-
organisms that are interacting hydrodynamically, such
as sperm flagella beating in harmony [10-14], and
metachronal waves in cilia [15-19]. Both of these oscilla-
tory elements, flagella and cilia, are driven by molecular
motors embedded in the cell surface, and interact
through the viscous environment (water). In order to
describe their synchronized motion, several theoretical
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models have been proposed [10,12,13,15-19]. While all
of these initial studies are focused on a homogeneous
set of identical systems, it will be important to consider
the role of disorder, as real biological motors possess
intrinsic heterogeneities that could affect the collective
dynamics.

An example of collective yet heterogeneous dynamics is
found in a bacterial carpet, which is recently introduced
as a new type of microfluidic device [20]. The assembly is
composed of a dense monolayer of bacteria that are lightly
attached to a solid substrate by their bodies (heads). The
bacteria have partial freedom to reorient their flagella
(tails), which pump the fluid and are orientationally
ordered by hydrodynamic interaction. Evolution of
correlated regions is observed, but the ordering remains
partial. Observations of irregular and slowly varying
flow structures (“whirlpools” and “rivers”) suggest the
presence of heterogeneity in the configurations of the
rotors [21]. Fabrication of more efficient microfluidic
pumps could be achieved through understanding and
controlling the heterogeneity.

Recently, we have proposed a generic model of hydro-
dynamically coupled rotors arrayed on a substrate, and
studied the collective dynamics of uniform elements [22].
In this letter, using a variant of the model, we address the
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effect of random intrinsic frequencies on synchronization.
To be concrete, we consider a simple and idealized model
of bacterial carpets. We assume that the bacteria have
complete freedom to reorient their flagellar tails without
any torque supported by the substrate. This is modeled
by mounting each flagellated bacterium on the tip of a
freely rotatable arm stemming from the substrate. In a
real bacterial carpet, there is no such arm, but the flagel-
lum is located at finite distance and height from the point
where the body is attached to the substrate (around which
the bacterium can partially rotate); see fig. 1(a). These
lengths are in the order of the diameter of the body, and
correspond to the length and height of the arm in our
model. We assume that the mounting angle of the flagel-
lum relative to the arm varies from one rotor to another,
while the magnitude of the force generated is assumed
to be constant and uniform. Depending on the sign of
the mounting angle, the flagellum generates a torque that
drives the rotor in either clockwise or counterclockwise
direction. We assume that the mounting angle and hence
the intrinsic frequency of the rotor are randomly distrib-
uted around zero. By varying the degree of randomness, we
study the transition from coherent to incoherent regimes
numerically. Our results suggest that synchronization of
the rotors, and hence collective pumping of the fluid,
require a quite narrow distribution of the mounting angle
in realistic cases. In order to understand the transition
behavior, we apply the mean-field theory, which is orig-
inally developed for global coupling, to our long-ranged
system. While we obtain a fair agreement between theory
and simulation for the synchronization threshold, the tran-
sition is shown to be more gradual than in globally coupled
oscillators.

Model. — We consider an array of rotors positioned
on a square lattice of grid size d. Each rotor has a thin,
freely-rotatable arm on the tip of which a flagellated
bacterium is mounted. The flagellum consists of a spheri-
cal bead of radius a (body) and a thin tail that lies hori-
zontally (flagellum). Motion of the bead is constrained on
a circular orbit of radius b located at height h from the
substrate, which we take to be the xy-plane. The posi-
tion of the i-th bead is thus given by r; =rg; + he, + bn;
where rg; is its base position on the square lattice and
n; = (cos ¢;,sin ¢;,0) is the unit vector that gives the
orientation of the arm via its phase ¢; = ¢;(t). The velocity
of the bead reads v; = ¢;t;, where t; = (—sin ¢;, cos ¢;,0)
is the unit vector tangential to the trajectory. We assume
that the active force F; exerted by the rotor on the
fluid has a constant magnitude F, and makes a fixed
angle §; (measured clockwise) from the radial direction;
F; = F(cosd;n; —sind;t;). See fig. 1(b) for the configura-
tion. The reaction force —F; on the rotor arm gives the
driving torque T; = Fbsind; and the intrinsic frequency
w; = F'sin §;/Cb, where ¢ =67na is the viscous drag coef-
ficient. The mounting angles §;’s are assumed to have the

(@)

Fig. 1: (Colour on-line) Schematic pictures of a) a bacterium in
real bacterial carpet, and (b) the rotor in our model (top view).
In (a), the bacterium can partially rotate around the point of
attachment to the substrate (black dot). In (b), the active force
F; exerted by the i-th rotor on the fluid is deviated by a fixed
angle §; from the radial direction. The reaction force drives
the rotor at the intrinsic frequency w; = F'sin d; /¢b, where b is
the radius of rotation and ( the viscous drag coefficient of the
bead.

Gaussian distribution

P(5) =

1 52 1
Vb eXp( 253) .
with the standard deviation dg.

We assume that the rotors are widely spaced so that
a,b,h < d. Then the velocity field of the fluid created
by the active forces is given by v(r)=>. G(r —r;) - Fj,
where G(r) = (3h?/27mn) -ror) /|lr) |, r1 = (z,y,0) is the
asymptotic expression of the Oseen-Blake tensor [23] for
h/d < 1. The rotor’s angular velocity is given by w; +
v(r;)-t;/b, or, more explicitly,

do;
dt

. 3fyw0d3 1
— 5i—
wop sin . ; e

[sin(qﬁi — ¢j + 5])

+ cos(; + ¢ — 05 — 20;5)] - (2)

Here, wo = F/Cb, r,;=r;, —r;= |I‘ij|(COS Qij, sin Oij), and
v =C(h?/nd® =6mrah?®/d® is the dimensionless coupling
constant. For a real bacterial carpet, a~h~1pum and
d ~ 10 ym give the rough estimate vy ~ 1072,

Numerical simulation. — We implemented the model
on a L x L square lattice and numerically integrated
eq. (2) by the Euler method. We assumed the periodic
boundary condition and computed the velocity field every
time step in the Fourier space. We set v =0.1 and varied
the angle deviation Jy as the control parameter. The
system size used was L = 128 for most of the results shown
below, while L =32, 64 and 256 are also used to check
finite-size effect. Starting from random initial configura-
tions of ¢;(t =0), the system reached a dynamical steady
state by the time t=1x10%/wy. The initial transient
stage is characterized by coarsening of topological defects
for small &g, the structure and dynamics of which are
discussed elsewhere [22]. In the present paper, we shall
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Fig. 2: (Colour on-line) Transition behavior for system size L =
32,64, 128, and 256 with comparison to the mean-field thepry
(MFT). (a) Orientational order parameter S = |(n)|=|(¢'?)]

vs. do. (b) Normalized frequency deviation Q= /(02?)/(w?)

vs. 0.

focus on statistical properties of the dynamical steady
states. The statistical data shown below are taken from
the time window 1 x 10* < wyt < 2.5 x 10°.

We plot the orientational order parameter S = |(n)|=
|(e'®)| as a function of Jy in fig. 2. Also shown is the
standard deviation (STD) of the actual frequency €2; =
(¢i)+ normalized by the STD of the intrinsic frequency w;,
Q= +/(0?)/(w?). Here and hereafter, the simple angular
brackets (---) mean the average over both site and time
unless otherwise stated, while (---), and (---); mean the
site-average and time-average, respectively. Note that S =
1 and @ =0 in the fully synchronized state and S =0 and
@ =1 in the desynchronized limit. As we increase Jg, S
and @ slowly converge to the desynchronized limit. While
the change in the orientational order parameter is sharper
for a larger system size, the frequency deviation has little
L-dependence. For comparison, we also show the results of
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Fig. 3: (Colour on-line) Distribution of the normalized actual
frequency Q/+/(w?) as functions of do. For comparison, the
distribution of the intrinsic frequency w; is also shown.

the mean-field theory, which will be explained in the next
section.

In fig. 3, we plot the distribution function of the actual
frequency €2 normalized by the STD of intrinsic frequency,
for different values of §p. The distribution consists of
a sharp delta-function like peak at =0 and broad
symmetric tails for Q>0 and Q <0. For §p < 3°, most
of the rotors are coherent and contribute to the center-
peak. For §p = 10°, the distribution is close to that of the
intrinsic frequency, while the center peak still remains. the
above data suggest that the synchronization transition in
this system is more gradual than that found in a globally
coupled system, and it is difficult to locate the transition
point exactly.

Next we plot the time series of the order parame-
ter S(t) =|(n(t))y| in fig. 4(a) and its variance Var(S) =
(S(t)%); — (S(t))? as a function of d in fig. 4(b). The vari-
ance has a peak near Jy = 6°, suggesting that there is a
subtle balance between synchronization and desynchro-
nization. We will call this the threshold angle and denote
by d¢p. In fig. 4(c), we plot the temporal correlation func-
tion of the order parameter Cg(t) = (S(t+¢)S(t))r —
(S(t))?. We find an oscillatory behavior with long corre-
lation time at dg = d;, = 6°. Although the origin of the
oscillation is beyond the scope of the present paper, a
preliminary study shows that the oscillatory behavior at
the threshold angle is a unique feature resulting from the
long-ranged nature of the interaction.

In fig. 5, we plot the orientational correlation function

Gn(lr]) = ([n(r+1) = ()] - [n(x)) = ()])r. ~ (3)

Here the outer angular brackets mean taking average over
r’ as well as the azimuthal angle of r. For 4 <y < 6°, we
observe an exponential decay of the correlation over a wide
distance. For dy > 6°, on the other hand, the correlation
is short-ranged and decays more slowly than exponential.
The qualitative change in the correlation function gives
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Fig. 4: (Colour on-line) (a) Time series of the order para-
meter S(t). (b) Variance of the order parameter Var(S) as
a function of Jg. Fluctuation is most enhanced at o = 6°.
(c) Auto-correlation function of the order parameter Cg(t).
An oscillatory behavior is prominent at do = 6°

another support of the above estimate of the threshold
angle.

Mean-field theory. — In this section, we compare the
numerical results with a mean-field theory for a simplifided
version of our model. First, when the coupling is weak
(y< 1) and the force angle is small (§yp < 1), we can
neglect the ¢;’s in the RHS of eq. (2) because they give
O(vdo) contributions. Next, as a part of our mean-field
ansatz, we replace the interaction kernel cr r, /r5 by
its angular average, as a result of which the cosine term in

[©)

- O * -
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R
\l

0001 1 1 1 1 al 1
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Distance r
Fig. 5: (Colour on-line) Orientational correlation function

Gn(r). Nearly exponential decay of correlation is observed for
do < 6°.

the RHS of eq. (2) is dropped. It gives the phase equation
in the familiar form,

._ZG

J#i

d(bz

(r; —r;) sin(di — ;) (4)

with w; =wpsind; and G(r) = 3ywed?/4mr®. The distri-
bution of the intrinsic frequency is given by P, (w)=
|d6/dw|P(8) = P(sin™*(w/wp))/ /w3 — w? .

Now we apply the mean-field ansatz which was origi-
nally proposed by Kuramoto [1] for global coupling:

Re' = jg:c; )e'®s. (5)

Here, the amplitude R and the phase 6 of the order
parameter are assumed to be constant in space and time,
which would be justified if the interaction is sufficiently
long-ranged. The isotropy of G(r) allows us to assume
0 =0 without loss of generality. Using this we can rewrite
eq. (4) as

doi _
.

— Rsin ¢;. (6)

Equation (6) allows a stationary (¢ = 0) solution if and
only if |w;| < R. The rotors satisfying this condition have
the actual frequency 2 =0 and are called the coherent
group. The phase of a rotor belonging to this group is
given by

¢; =sin (&> . (7)

R

where the principal value of the inverse-sine function
should be chosen so that |¢| < 7/2. The phase distribution
n(¢) of the coherent group reads

dw

P,(Rsin ¢) - R cos ¢. (8)
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The rotors with |w(r)| > R, on the other hand, form
the incoherent group. The actual frequency of a rotor
belonging to this group is given by

2
Q; = T

— 2 _R2
o o = \VVYi .
fo dd)ﬁ

(9)

The phase distribution n’(¢) =n'(¢;w;) of an incoherent
rotor is proportional to the frequency it comes to ¢:

' (¢;w;) =C|¢| = Clw; — Rsing| " (10)

with the normalization factor C' = \/w? — R? /2.
Now we replace the factor €!?s in the RHS of eq. (5) by
its ensemble average as

R=Y_G(r—r')(e”). (11)

The average is the sum of the contributions from the coher-
enfc and incoherent groups, (/%) .on = fjﬁz d¢ n(¢)e’® and
(€Y incon = f‘w|>R dwP,(w) [7_d¢n'(¢;w)e’®. The latter
vanishes because of the symmetry of P,(w), and the
former with eq. (8) yields

R=RGoJ(R), (12)

/2
J(R) = / d¢ P, (Rsin ¢) cos? ¢, (13)

—7/2

with Go=)_,G(r). This is a self-consistent equation
for the mean-field amplitude. Expanding the integral
as J(R) = (7/2)[P,(0) + P",(0)R?/8 + O(R*)], we obtain
the critical coupling strength

2
7P, (0)

GOC (14)

for the synchronization transition (at which a non-
vanishing solution R appears). For a square lattice, we
have Gp=9.03-3ywp/4m. Also we have P,(0)=
1/(v/2mwody). Putting these together into eq. (14), we ob-
tain the critical angle

doe = 1.357. (15)
In the simulation we used y=0.1, which gives Jp. =
0.135 (rad) =7.73 (deg). This value is not very far from
the numerically obtained threshold angle §;, =6 (deg). In
a real bacterial carpet, v can be in the order of 1072 as
we estimated in the above. It means that a quite narrow
distribution of the mounting angle (below 1°) is required
to achieve coordinated motion. On the other hand, the
mean-field theory predicts a sharp transition, in contrast
to the gradual crossover observed in the simulation.
Near dp., the orientational order parameter decays as
S o< v/dge — 0o, while the normalized frequency deviation
linearly approaches to the desynchronized limit as 1 — Q)
doc — 00 The distribution of the actual frequency Pq (1)

for 09 < dp. has three distinct peaks, one at w =0 (the
coherent group) and two symmetric peaks for w >0 and
w <0 (the incoherent group). The central peak vanishes
for 09 > dg.. These behaviors are qualitatively different
from the numerical results shown in figs. 2 and 3. In
order to explain the unconventional transition behavior,
it is necessary to develop a theoretical framework that
incorporates spatial fluctuations, which is an interesting
problem for the future.

Conclusion. — The synchronization transition caused
by long-range hydrodynamic coupling is shown to be more
gradual than for the global coupling. The threshold angle
for the crossover is estimated, and is not far from the
mean-field estimate for the transition point. It suggests
that a very narrow angle distribution is required to achieve
correlated motion in a real bacterial carpet. We believe
that this work sheds some light on the delicate issues
involved in hydrodynamic synchronization and hope that
it stimulates further theoretical and experimental studies
of the rich behavior of such systems.
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