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Abstract – Empirical studies on the spatial structures in several real transport networks reveal
that the distance distribution in these networks obeys a power law. To discuss the influence
of the power law exponent on the network’s structure and function, a spatial-network model is
proposed. Based on a regular network and subject to a limited cost C, long-range connections
are added with power law distance distribution P (r) = ar−δ. Some basic topological properties of
the networks generated by the model with different δ are studied. It is found that the network
has the smallest average shortest path when δ= 2. Then a classic traffic model on our model
networks is investigated. It is found that δ= 1.5 is the optimization value for the traffic process in
our model. All of these results give us some deep understanding about the relationship between
spatial structure and network function.

Copyright c© EPLA, 2010

Introduction. – In the last few years, the analysis and
modeling of networked systems have received considerable
attention within the physics community, including the
World Wide Web, the Internet, and biological, social, and
infrastructure networks [1–3]. Some of these networks exist
only as abstract networks where the precise positions of
the network nodes have no particular meaning, such as
biochemical networks and social networks, while many
others in which nodes have well-defined positions, are
different. In all kinds of network, a particular class is
the spatial network embedded in the real space. Many
networks belong to this class like the neural network [4],
communication networks [5], the electric-power grid [6],
transportation systems including airport [7], street [8],
railway and subway [9] networks. Most of the previous
works on the studies of complex networks have focused on
the characterization of the topological properties or other
issues, while the spatial aspect has received more attention
recently [10–13].
Actually, geography greatly matters. The geography

information of the nodes and the distance between nodes
would determine the characteristics of the network and
play a more or less important role in the dynamics happen-
ing in the network. Ignoring it one would miss some of

(a)E-mail: yanqing.hu.sc@gmail.com
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these systems’ interesting features. Empirical studies have
revealed some interesting phenomena about the spatial
structure of networks. One is that the distance distrib-
ution of the edges obeys a power law. Examples include
the Internet [14], social communication networks [15] and
online social networks [16]. Recent research on circuit
placement showed that the wire length of real circuits
exhibits a power law distribution [17]. The anatomical
distance distributions in human brain networks can also be
well fitted by an exponentially truncated power law [18].
More evidence comes from the empirical research on trans-
portation networks. For Japanese airline networks [19],
even if there is an exponential decay in domestic flights,
the distance distribution follows a power law when interna-
tional flights are added. For the U.S. intercity passenger
air transportation network, the distribution of the edge
distance has a power law tail with exponent δ= 2.20±
0.19 [20].
Why does the geographical embedded network show this

special spatial structure? How does the distance distribu-
tion affect the network’s function? All these problems are
interesting. Analyzing these problems will help us under-
stand the real spatial network deeply and benefit us for the
design of the transport system. In our opinion, the clue to
answer these questions is the consideration of costs and
efficiency when the geographical embedded networks were
designed.
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In spatial embedded networks, especially transport
networks, the connections between nodes are restricted
by cost constraints, reflected through the distance distri-
bution. The cost of establishing long-range connections
between distant spots is usually higher than the cost of
establishing short-range connections. For electric-power
grids, the connection cost between farther spots is even
higher, given that in long high-voltage lines a large
amount of energy is lost during the transmission [21].
So we can easily understand that the number of short-
range connections is much higher than the long-range
connections in these networks.
To demonstrate how the distance distribution of the

connections affect the structure, function and the traffic
dynamics process of the networks, we proposed a spatial-
network model in this paper. The model takes into account
both the power law distribution of the distance and the
total cost of the edges. We construct spatially constrained
networks embedded in a geographical space, the distance
distribution of the network obeys a power law distribution
P (r)∝ r−δ and the network has a limited total cost C to
create edges. We analyse the spatial network in detail, it
shows that the network has the smallest average shortest
path when δ = 2, which is not influenced by the value of
the total cost C and the size of the networks. However,
when we investigate a simple traffic model on the network,
it is found that the network with δ= 1.5 has the biggest
transport capacity.

Spatial-network model with limited total cost. –
Generally, the cost and efficiency are equally important
in transport networks. The network structure is the result
caused by the tradeoff between cost and efficiency.
The model network is embedded in a k-dimensional

regular network. The long-range connections is generated
from a power law distance distribution by the approach
suggested in [12]. Different from the previous model [12],
we introduce a total cost C to this network model. Every
edge has a cost c which is linearly proportional to its
distance r. For simplification, the edge connecting node
i and j would cost cij , and is represented by its length
rij in the model. Naturally, the cost is limited in the
network, which display as a certain limited total cost C.
The network is constructed as follows.

1. N nodes are arranged in a k-dimensional lattice.
Every node is connected with its nearest neighbors
which can keep every node reachable. In addition,
between any pair of nodes there is a well-defined
Euclidean distance.

2. A node i is chosen randomly, and a certain distance r
(2� r�Nmax, Nmax is the largest distance between
any nodes in the initial network) is generated with
probability P (r) = ar−δ, where a is determined from
the normalization condition

∑Nmax
r=2 P (r) = 1.

3. One of the Nr nodes that are at a distance r from
node i is picked randomly, for example node j. An

edge between nodes i and j is created if there exist
no edge between them yet. The denominator of the
weight between i and j is plus 1 if there has already
been an edge between them.

4. After step 3, a certain cost cij = rij is generated.
Repeat step 2 and 3 until the total cost reaches C.

After these steps, we can obtain a weighted network
in which the weight reflects the closeness of nodes. For
example, if nodes i and j are connected three times, the
weight of the edge between them will be 1/3. Finally,
we also transfer the weighted network into a binary one
by imposing all the weight of the edges to 1. Obviously,
there are two significant features of the spatial network
generated by our model: the power law distribution of the
long-range connections in the network and the restriction
on total energy. In this model, the distance distribution
and the total cost play important roles in the formation
of the network. Consequently, we first focus on how the
topological properties are affected by the two factors. We
are interested in how the power law exponent δ influences
the topological properties in our model, including the
average degree (node intensity in weighted networks),
and the average shortest path of the network. We have
simulated the model both in a 1-dimensional chain and
2-dimensional lattice, with periodic boundary condition,
respectively. They all give the same qualitative results.
So in the following, we only report the results of the
1-dimensional chain with periodic boundary condition.
The network size is typically N = 500 and the results
are the average of 1000 realizations. The total cost is set
as C =Nc (C = 500c), where c is the average cost per
node which is set as 10, 20, 30, 40, 50 successively in the
simulation. The results are shown in fig. 1. Interestingly, it
shows that in weighted networks, the network enjoys the
minimum average shortest path when δ= 2. In the binary
networks, the average degree increases with δ. The aver-
age shortest path reaches its minimum when δ= 2, which
is consistent with the result in [22]. Moreover, these two
kinds of networks can have the maximum average node
intensity and average degree, respectively. So when the
total cost is limited, the network with δ= 2 has the lowest
average shortest path, which may explain why the power
law exponent of the distance distribution is close to 2 in
many airline networks. As we know, in the public-
transport networks, travelers prefer less transfers when
traveling. The transport network with δ= 2 has the
lowest average shortest path in topological structure,
which can make travelers have the least transfers and
more convenience.
What is more, we also investigate how the total cost

affects the networks properties, especially in the binary
network which we are about to use to investigate how
the spatial property affects traffic dynamics. As we know,
because of the probability distribution P (r) = ar−δ, most
of the connections are short while a few connections are
relatively long when the connections distance shows a
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(a) (b)

(c) (d)

Fig. 1: (Colour on-line) Basic topological properties in the
model network. (a), (b) represent the node intensity and
average shortest path of different limited total cost C = 500c
(c= 10, 20, 30, 40, 50) respectively in weighted spatial networks.
(c), (d) show the average degree and average shortest path in
corresponding binary networks. Each point is averaged 1000
times.

power law distribution. However, when the total cost
reaches a certain value in the binary network, the network
with a given size would become nearly full connected and
the power law distance distribution will be destroyed.
Specifically, when the power law exponent δ is close to 4,
the underlying network cannot provide enough short long-
range connections when δ= 2, 3, or a higher-dimensional
space, although the total cost is not too high, it may
result that the distance distribution shifts from standard
power law to truncated power law, which is prevalent
in the real world. In this model, most of the long-range
connections show truncated power law with only a small
number of short long-range connections shifted. With
the increase of total cost, more long-range edges are
created. The average degree increases, while the average
shortest path decreases. One interesting result is that for
a certain range of total cost, the relationship between
topological properties and the parameter δ keeps the same
qualitatively as shown in fig. 1. Then, how this structure is
related with the traffic dynamics? Next section will show
us some results.

Traffic process on the model spatial network.
– From the analysis of the spatial network above, the
average shortest path in the model network may explain
why some public networks’s exponent is close to 2 to a
certain extent. What will it happen when we consider the
traffic dynamics on the above spatial embedded networks?
To investigate the traffic dynamics it may be helpful
to understand real systems such as the express-delivery
network. The express-delivery network is constructed
based on all kinds of public-transport networks, especially
the airline networks. But it has its own features, which

are different from the public-transport networks. First,
the express-delivery network is constructed from the
perspective of overall optimization, while the public-
transport networks are constructed by self-organization,
based on a local optimization process [23]. Second, the
express-delivery network really cares about the traffic
process on the network. Both efficiency and cost are
important factors to shape the network structure. Third,
as the traffic model on networks, the bottleneck of the
express-delivery network lies in the node, the capability
of the node determines the whole network’s efficiency. So
to investigate the traffic flow on such kind of network
may help us to find how the exponent δ influences the
traffic flow on the model network.
We employ a typical traffic dynamics [24] on this

spatial network. Firstly, generate the underlying network
infrastructure with the method we propose in the previous
section. We also take the network as a binary one. Then a
traffic dynamics is modeled on the network. All the nodes
embedded in the spatial network are treated as both hosts
and routers. We assume that every node can deliver at
mostD packets one step toward their destinations. At each
time step, there are R packets generated homogeneously
on the nodes in the system. The packets are delivered
from their own origin nodes to destination nodes by a
special routing strategy. There are many kinds of different
routing strategies, such as the shortest pathways routing
strategy, the local dynamical strategy [25] and so on. Here
the shortest-pathways routing strategy is used. A packet,
upon reaching its destination, is removed from the system.
The order parameter

η(R) = lim
t→∞

1

R

〈∆Np〉
∆t

(1)

is used to characterize the phase transition. Here ∆Np =
Np(t+∆t)−Np(t), 〈. . .〉 denotes taking the average over
a time window of width ∆t. Np(t) is the number of pack-
ets in the system at time t. Hence, the order parameter η
is actually corresponding to the average packets number
rate congested in the system. We are most interested in the
critical value Rc (as measured by the number of packets
created within the network per unit time), where a phase
transition takes place from free flow to congested traffic.
This critical value can best reflect the maximum capability
of a system handling its traffic. In particular, for R<Rc,
the numbers of created and delivered packets are balanced,
leading to a steady free traffic flow. At this time, the order
parameter η has a small value close to 0 because there is
no congestion in the system. For R>Rc, traffic congestion
occurs as the number of accumulated packets increases
with time, simply because the capacities of the nodes
for delivering packets are limited. Under this circum-
stance, of course the order parameter η will become larger
than the small value. Therefore, in our paper, we deter-
mine Rc in this way: once the order parameter is larger
than the small value mentioned before, Rc equals the
corresponding R. Here, the small value is chosen as 0.05.
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(a) (b)

Fig. 2: (Colour on-line) The simulation for the critical value
η(R) as a function of R, different colours mean different δ.
The network size here is N = 500 while every node has the
same delivery ability D= 1. (a) The total cost C is 500× 10.
(b) The total cost C is 500× 50. This figure shows that the
network with δ= 1.5 is the best for the traffic process, which
has no relationship with the value of the total cost C. Each
point is averaged 50 times.

For simplicity, here we construct a network with 500
nodes under the total cost C = 500× 10 and C = 500× 50,
and set that every node has the same delivery abilityD=1.
We will adjust the network parameters δ to generate
different networks, and then investigate how δ affects the
critical value Rc and the order parameter η(R).
The simulation results for the critical value η(R) as a

function of R on the model networks are reported in fig. 2.
It shows that the network with δ= 1.5 has the biggest Rc
and the smallest η(R).
In previous works, the traffic handling capacity of a

particular network has been estimated by a simple analysis
method [24]. The betweenness coefficient of node v can be

calculated as g(v) =Σs �=t
σst(v)
σst
. Here σst is the number of

shortest paths going from s to t and σst(v) is the number
of shortest paths going from s to t and passing through v.
Note that with the increasing of parameter R (number
of packets generated every step), the system undergoes a
continuous phase transition to a congested phase. Below
the critical value Rc, there is no accumulation at any
node in the network and the number of packets that
arrive at node u is Rgu/N(N − 1) on average. Therefore,
a particular node will collapse when Rgu/N(N − 1)>Du,
where gu is the betweenness coefficient and Du is the
transferring capacity of node u. So, congestion occurs at
the node with the largest betweenness. Thus Rc can be
estimated as Rc =DuN(N − 1)/gmax, where gmax is the
largest-betweenness coefficient of the network.
In fig. 3(a), the analysis results of Rc with network

parameters δ are shown. It indicates that this kind of
network has the biggest Rc when δ is close to 1.5, which is
in good agreement with the simulation results as shown in
fig. 3(b). In addition, we also calculated the situations for
1000 nodes and 3000 nodes, the Rc also maximizes when
δ= 1.5. Details are shown in fig. 4.

Conclusions. – In this paper, we tried to investigate
how the spatial properties affect the topology as well
as the function of networks. According to many former

(a) (b)

Fig. 3: (Colour on-line) The network size here is N = 500
while every node has the same delivery ability D= 1. (a) The
analytical results of Rc (using the method in [24]) with different
values of the parameter δ. The total cost C increases from
bottom to top. (b) The critical Rc vs. δ with the total cost
C = 500× 50. Both simulation and analysis indicate that the
maximum Rc corresponds to δ= 1.5. Each point is averaged
100 times.

(a) (b)

Fig. 4: (Colour on-line) The analytical results of Rc with
different values of the parameter δ when the network size is
(a) N = 1000 and (b) N = 3000, while every node has the same
delivery ability D= 1. The results indicate that the δ= 1.5 has
no relationship with the network size. Each point is averaged
50 times.

empirical researches, the distances of real systems such as
airline systems and express-delivery systems are inclined
to obey a power law distribution. Actually, our results
intend to help us understand why they are like this
and what their effects are. Specifically, a spatial-network
model is proposed and the details of the model are
studied. In the model, long-range connections are added
with probability P (r) = ar−δ in a regular lattice while
the total cost is limited to C. Some basic topological
properties of the network generated by the model are
investigated. It is found that the network has the smallest
average topological shortest path when the power law
exponent δ= 2. This may be the reason why the distance
distribution in an airport network shows a power law with
exponent close to 2, in fact people care more about the
convenience and prefer less transfers when traveling by air.
Then a traffic model is studied on the model network. We
find that the network with δ= 1.5 is the most conducive
to the traffic process. Interestingly, it has not the smallest
average topological shortest path. Our results indicate
that spatial constraints have an important influence on
the transport networks and should be taken into account
when modeling real complex systems.
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