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Abstract – We experimentally study the fluctuations of the work done by an external Gaussian
random force on two different stochastic systems coupled to a thermal bath: a colloidal particle
in an optical trap and an atomic-force microscopy cantilever. We determine the corresponding
probability density functions for different random forcing amplitudes ranging from a small fraction
to several times the amplitude of the thermal noise. In both systems for sufficiently weak forcing
amplitudes the work fluctuations satisfy the usual steady-state fluctuation theorem. As the forcing
amplitude drives the system far from equilibrium, deviations of the fluctuation theorem increase
monotonically. The deviations can be recasted to a single master curve which only depends on the
kind of stochastic external force.

Copyright c© EPLA, 2010

Introduction. – Fluctuation relations are a very
important theoretical result for the description of non-
equilibrium microscopic systems since they quantify the
statistical properties of fluctuating energy exchanges
under rather general conditions [1]. In particular, the
so-called fluctuation theorem (FT) [2,3] quantifies the
asymmetry of the distribution of positive and negative
fluctuations of a given time-integrated quantity (injected
work, entropy production, etc.). For a system in contact
with a thermostat at temperature T and driven by an
external force in a non-equilibrium steady state, the FT
states that the ratio of the probability of finding a positive
fluctuation with respect to that of the corresponding
negative value for the work Wτ done by the force during
a time interval τ satisfies

ln
P (Wτ =W )

P (Wτ =−W ) →
W

kBT
, τ � τc, (1)

where τc is the longest characteristic relaxation time
of the system. Equation (1) has been tested in several
experiments such as fluidized granular media [4], a
colloidal particle dragged by an optical trap [5], electrical
circuits [6], mechanical harmonic oscillators [7] and a
colloidal particle near the stochastic resonance [8]. New
fluctuation relations have been proposed as well for the
entropy production [9] or by considering modifications of
the statistical properties of the thermal bath [10–12]. In

(a)E-mail: juan.gomez solano@ens-lyon.fr

all of these examples the force which drives the system
out of equilibrium is inherently deterministic. However, it
has been recently argued that the nature (deterministic
or stochastic) of the forcing can play an important role in
the distribution of the injected work leading to possible
deviations from the relation (1) for large fluctuations
(Wτ/〈Wτ 〉> 1). Indeed, it has been found in experiments
and simulations such as a Brownian particle in a Gaussian
white [13] and colored [14] noise bath, turbulent thermal
convection [15], wave turbulence [16], a vibrating metallic
plate [17], an RC electronic circuit [18] and a gravitational
wave detector [19] that the probability density functions
of the work done by a stochastic force are not Gaussian
but asymmetric with two exponential tails leading to
violations of the FT in the form of effective tempera-
tures or non-linear relations between the left- and the
right-hand side of eq. (1). It is important to remark that
in the systems previously cited the steady-state FT is
violated because in such a case the external random force
acts itself as a kind of thermal bath. One question which
naturally arises is what the work fluctuation relations will
become when in addition to the external random forcing
a true thermalization process is allowed. In this situation
there are two sources of work fluctuations: the external
force and the thermal bath. As pointed out in [12,17], one
is interested in the distribution of the work fluctuations
done by the external random force in the presence of a
thermostat and the conditions under which the FT could
be valid.
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Fig. 1: (Colour on-line) a) Colloidal particle in the optical trap
with modulated position. b) AFM cantilever close to a metallic
surface. See text for explanation.

In the present work we address these questions in
two experimental systems: a Brownian particle in an
optical trap and a micro-cantilever used for atomic-force
microscopy (AFM). Both are in contact with a thermal
bath and driven out of equilibrium by an external random
force whose amplitude is tuned from a small fraction
to several times the amplitude of the intrinsic thermal
fluctuations exerted by the thermostat.

Colloidal particle in an optical trap. – The first
system we study consists on a spherical silica bead of
radius r= 1µm immersed in ultrapure water which acts
as a thermal bath. The experiment is performed at a room
temperature of 27± 0.5◦C at which the dynamic viscosity
of water is η= (8.52∓ 0.10)× 10−4 Pa s. The motion of the
particle is confined by an optical trap which is created
by tightly focusing a Nd:YAG laser beam (λ= 1064 nm)
by means of a high-numerical-aperture objective (63×,
NA= 1.4). The trap stiffness is fixed at a constant value
of k= 5.4 pN/µm. The particle is kept at h≈ 10µm above
the lower cell surface to avoid hydrodynamic interactions
with the walls. Figure 1(a) sketches the configuration of
the bead in the optical trap. An external random force
is applied to the particle by modulating the position
of the trap x0(t) using an acousto-optic deflector, along
a fixed direction x on the plane perpendicular to the
beam propagation (+z). The modulation corresponds to
a Gaussian Ornstein-Uhlenbeck noise of mean 〈x0(t)〉=
0 and covariance 〈x0(s)x0(t)〉=A exp(−|t− s|/τ0). The
correlation time of the modulation is set to τ0 = 25ms,
whereas the value of its amplitude A is tuned to control
the driving intensity. We determine the particle barycenter
(x, y) by image analysis using a high-speed camera at
a sampling rate of 1 kHz with an accuracy better than
10 nm. See ref. [20] for more details about the experimental
apparatus. The attractive force exerted by the optical
trap on the bead at time t along x is given by −k(x(t)−
x0(t)). Hence, for the experimentally accessible timescales
the dynamics of the coordinate x is described by the
overdamped Langevin equation

γẋ=−kx+ ζT + f0. (2)
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Fig. 2: (Colour on-line) (a) Dependence of the parameter
α on the standard deviation of the Gaussian exponentially
correlated external force f0 acting on the colloidal particle.
(b) Probability density functions of the work wτ for α= 0.20;
(c) α= 3.89; and (d) α= 10.77. The symbols correspond to
integration times τ = 5ms (◦), 55ms (�), 105ms (♦), 155ms
(�), 205ms (�) and 255ms (∗). The solid black lines in (b) and
(c) are Gaussian fits.

In eq. (2) γ = 6πrη is the viscous drag coefficient,
ζT is a Gaussian white noise (〈ζT 〉= 0, 〈ζT (s)ζT (t)〉=
2kBTγδ(t− s)) which mimics the collisions of the thermal
bath particles with the colloidal bead and f0(t) = kx0(t)
plays the role of the external stochastic force. The
standard deviation δf0 of f0 is chosen as the main control
parameter of the system. Besides the correlation time
τ0 of f0 there is a second characteristic timescale in the
dynamics of eq. (2): the viscous relaxation time in the
optical trap τγ = γ/k= 3ms< τ0. In order to quantify
the relative strength of the external force with respect to
the thermal fluctuations, we introduce a dimensionless
parameter which measures the distance from equilibrium:

α=
〈x2〉
〈x2〉eq − 1, (3)

where 〈x2〉 is the variance of x in the presence of f0 >
0 whereas 〈x2〉eq = kBT/k is the corresponding variance
at equilibrium (f0 = 0). The dependence of α on δf0 is
quadratic, as shown in fig. 2(a). This quadratic depen-
dence is a consequence of the linear response of the system
to the external forcing described by the Langevin eq. (2).
The work done by the external random force on the

colloidal particle (in kBT units) is

wτ =
1

kBT

∫ t+τ
t

ẋ(t′)f0(t′) dt′. (4)

Thus, by measuring simultaneously the time evolution of
the barycenter position of the particle and the driving
force we are able to compute directly the work injected
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Fig. 3: (Colour on-line) Asymmetry function of the PDF of the
work done by the external force on the colloidal bead computed
at τ = 10τ0 for different values of the parameter α: 0.20(◦),
0.51(�), 1.84(♦), 3.89(�), 6.69(�), 10.77(∗). The dashed line
represents the prediction of the fluctuation theorem ρ(w) =w.
Inset: Expanded view for α� 3.89.

into the system by the driving. In figs. 2(b)–(d) we
show the probability density functions (PDF) of wτ for
different values of τ and α. We observe that for a fixed
value of α, the PDFs have asymmetric exponential tails
at short integration times and they become smoother
as the value of τ increases. For α= 0.20 they approach
a Gaussian profile (fig. 2(b)) whereas asymmetric non-
Gaussian tails remain for increasing values of α. Note that
asymmetric non-Gaussian PDFs of the work are common
in driven non-linear systems [8,21] and systems driven by
a stochastic force [16–19]. As shown in figs. 2(c), (d),
the asymmetry of these tails becomes very pronounced
for large α> 1 even for integration times as long as τ =
250ms= 10τ0, where we have taken τ0 because it is the
largest correlation time of the dynamics. The origin of
this non-Gaussianity can be traced back to the strong
correlation between the fluctuations of the particle motion
and the stochastic external driving as α increases. As
pointed out in [18], the deviations of the linear relation of
eq. (1) (with respect to wτ ) can occur for extreme values
of the work fluctuations located on the non-Gaussian tails.
We define the asymmetry function of the PDF P as

ρ(w) = lim
τ
τc
→∞
ln
P (wτ =w)

P (wτ =−w) , (5)

so that eq. (1) reads

ρ(w) =w. (6)

From the experimental PDFs of wτ we compute ρ(w) as
the logarithm in eq. (5) for integration times τ = 10τ0. We
checked that for this value the limit of eq. (5) has been
attained. Figure 3 shows the profile of the asymmetry
functions for different values of α. We notice that for

sufficiently small values (α= 0.20, 0.51< 1), the FT given
by eq. (6) is verified by the experimental data. To our
knowledge, this is the first time that the FT holds for
a random force without introducing any prefactor in the
linear relation of eq. (6). It is important to point out
that any deviation from the linear relation of eq. (6) for
extreme fluctuations is unlikely since we probed values as
large as wτ/〈wτ 〉 ∼ 5. Indeed it is argued [12–14,18], that,
for strongly dissipative systems driven by a random force,
the deviations from FT may occur around wτ/〈wτ 〉 ∼ 1.
Furthermore in the present case the validity of the FT
for weak driving amplitudes α< 1 is consistent with the
fact that for integration times τ > 25ms, the ratio ρ(w)/w
has converged to its asymptotic value 1 for all measurable
w. Note that this convergence to the FT prediction is
quite similar to that measured in system driven out of
equilibrium by deterministic forces [6–8]. For instance in
the case of a harmonic oscillator driven by a sinusoidal
external force the asymptotic value of ρ(w)/w is reached
for integration times larger than the forcing period [7].
In contrast, deviations from eq. (6) are expected to

occur for α> 1 because the fluctuations of injected energy
produced by the external random force become larger than
those injected by the thermal bath. Indeed fig. 3 shows
that for values above α= 1.84, eq. (6) is not verified any
more but ρ becomes a non-linear function of wτ . For small
values of wτ it is linear with a slope which decreases as the
driving amplitude increases whereas there is a crossover to
a slower dependence around wτ/〈wτ 〉 ∼ 1, a qualitatively
similar behavior to those reported in [13,16–19]. We
finish this section by emphasizing that we have clearly
found that for an experimental system whose dynamics
correspond to a first-order Langevin equation subjected
to both thermal and external noises, the FT can be
satisfied or not depending on the strength of the external
driving. The details about how this deviations arise and
the convergence to generic work fluctuation relations will
be given further. We first analyze the experiment on
the AFM.

AFM cantilever. – A second example of a system
for which thermal fluctuations are non-negligible in the
energy injection process at equilibrium is the dynamics of
the free end of a rectangular micro-cantilever used in AFM
measurements. The cantilever is a mechanical clamped-
free beam, which can be bended by an external force F and
is thermalized with the surrounding air. The experiment
is sketched in fig. 1(b).
We use conductive cantilevers from Nanoworld

(PPP-CONTPt). They exhibit a nominal rectangular
geometry: 450µm long, 50µm wide and 2µm thick,
with a 25 nm PtIr5 conductive layer on both sides. The
deflection is measured with a homemade interferometric
deflection sensor [22], inspired by the original design of
Schonenberger [23] with a quadrature phase detection
technique [24]: the interference between the reference
laser beam reflecting on the chip of the cantilever and
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the sensing beam on the free end of the cantilever gives
a direct measurement of the deflection X. Our detection
system has a very low intrinsic noise, as low as 4 pm rms
in the 100 kHz bandwidth we are probing [22,25].
From the power spectrum of the deflection fluctuations

of the free end at equilibrium (F = 0) we verify that
the cantilever dynamics can be reasonably modeled as
a stochastic harmonic oscillator with viscous dissipation
[25,26]. Hence, in the presence of the external force the
dynamics of the vertical coordinate X of the free end is
described by the second-order Langevin equation

mẌ + γẊ =−kX + ζT +F, (7)

where m is the effective mass, γ the viscous drag coeffi-
cient, k the stiffness associated to the elastic force on the
cantilever and ζT models the thermal fluctuations. m, γ
and k can be calibrated at zero forcing using fluctuation
dissipation theorem, relating the observed power spectrum
of X to the harmonic-oscillator model: in our experiment
we measure m= 2.75× 10−11 kg, γ = 4.35× 10−8 kg/s and
k= 8.05× 10−2N/m. The amplitude of the equilibrium
thermal fluctuations of the tip position (i.e.

√〈x2〉eq =√
kBT/k� 2 10−10m) is two orders of magnitude larger

then the detection noise (i.e. 4 pm rms). The signal-to-
noise ratio is even better when the system is driven
by an external force F . The characteristic timescales
of the deflection dynamics are the resonance period of
the harmonic oscillator τk = 2π

√
(m/k) = 116µs and the

viscous relaxation time τγ =m/γ = 632µs, which is the
longest correlation time.
When a voltage V is applied between the conductive

cantilever and a metallic surface brought close to the tip
(h∼ 10µm apart), an electrostatic interaction is created.
The system behaves as a capacitor with stored energy
Ec =

1
2C(X)V

2, with C the capacitance of the cantilever-
tip/surface system. Hence, the interaction between the
cantilever and the opposite charged surface gives rise to
an attractive external force F =−∂XEc =−aV 2 on the
free end, with a= ∂XC/2. If we apply a static voltage V ,
the force F can be deduced from the stationary solution

of eq. (7): kX =−aV 2, where X is the mean measured
deflection. k being already calibrated, we validate this
quadratic dependence1 of forcing in V and measure a=
1.49× 10−11N/V2.
As the electrostatic force F is only attractive, its mean

value cannot be chosen to be 0. We thus generated a
driving voltage V designed to create a Gaussian white
noise forcing f0 around an offset F : F = F + f0. The
variance δf0 of f0 is the main control parameter of
the system. In the absence of fluctuations ζT and f0,
eq. (8) has the stationary solution X = F/k. This solution
corresponds to the mean position attained by the free end
in the presence of the zero mean fluctuating forces. Hence,

1The quadratic dependence is valid only after taking care to
compensate for the contact potential between the tip and the sample,
which gives a small correction of the order of a few tens of mV.
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Fig. 4: (Colour on-line) (a) Dependence of the parameter α on
the standard deviation of the Gaussian white external force f0
acting on the cantilever. (b) Probability density functions of
the work wτ for α= 0.19; (c) α= 3.03; and (d) α= 18.66. The
symbols correspond to integration times τ = 97µs (◦), 1.074ms
(�), 2.051ms (♦), 3.027ms (�), 4.004ms (�) and 4.981ms (∗).
The black dashed lines in (b)–(d) represent the exponential fits
of the corresponding tails.

we focus on the dynamics of the fluctuations x=X −X
around X which are described by the equation

mẍ+ γẋ=−kx+ ζT + f0. (8)

Figure 4(a) shows the dependence between the parame-
ter α defined in eq. (3) for the stochastic variable x and
the control parameter δf0. We find that this dependence is
quadatric verifying the linearity of the stochastic dynam-
ics of the free end of the cantilever. On the other hand,
the work done by the external random force during an
integration time τ is computed from eq. (4). The corre-
sponding PDFs are shown in figs. 4(b)–(d). Unlike the
colloidal particle, the PDFs do not converge to a Gaussian
distribution but to a profile with asymmetric exponential
tails even for the smallest driving amplitude (α= 0.19)
and for integration times as long as τ = 8τγ , as shown in
figs. 4(b)–(d). Surprisingly, when computing the asymme-
try function for α= 0.19< 1 and τ = 4τγ the steady-state
FT of eq. (6) is perfectly verified, as shown in fig. 5. Work
fluctuations as large as 2.5 times their mean value located
on the exponential tails are probed and hence deviations
from FT are unlikely for the same reasons discussed for
the case of the Brownian particle.
In fig. 5 we see that for α� 1.21, the deviations from

eq. (6) appear as a non-linear relation with a linear part for
small fluctuations whose slope decreases as α increases and
a crossover for larger fluctuations, qualitatively similar to
the behavior observed for the colloidal particle, as shown
clearly in the inset of fig. 5. In the following we discuss
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Fig. 5: (Colour on-line) Asymmetry function of the probability
density function of the work done by the external force on
the AFM cantilever computed at τ = 4τγ for different values
of the parameter α: 0.19 (◦), 1.21 (�), 3.03 (♦), 6.18 (�),
9.22 (�), 12.77 (∗), 15.46 (×), 18.66 (�), 22.10 (�). The dashed
line corresponds to the prediction of the fluctuation theorem
ρ(w) =w. Inset: expanded view for α� 9.22.

the properties of these deviations as the energy injection
process becomes dominated by the external force.

Fluctuation relations far from equilibrium. – We
address now the question of how the deviations from
eq. (6) arise as the external stochastic force drives the
system far from equilibrium. As shown previously, for
α� 1, the forcing amplitude is strong enough to destroy
the conditions for the validity of the FT for wτ . We note
that there are two well-defined limit regimes depending
on the driving amplitude: one occuring at small values of
α for which the steady-state FT is valid, and the limit
α� 1 for which the the role of the thermal bath must
be negligible in the energy injection process, which must
be completely dominated by the external stochastic force.
In order to investigate whether the transition between
these two regimes is abrupt or not, we proceed by noting
that for the latter the stochastic force term ζT in eqs. (2)
and (8) will be negligible compared to f0. This implies
that the resulting statistical time-integrated properties of
the corresponding non-equilibrium steady state will be
invariant under a normalization of the timescales and the
temperature of the system. In particular, the resulting
fluctuation relations for wτ must lead to a master curve
for the asymmetry function in the far-from-equilibrium
limit α� 1. The information about the transition of
the fluctuation relations to this regime is given by the
convergence to the master curve.
We introduce the normalized work w∗τ as

w∗τ =
τc

τ

wτ

1+α
. (9)

The physical idea behind this normalization is that for
α� 1, the thermal bath alone works as a heat reservoir for
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Fig. 6: (Colour on-line) (a) Asymmetry function of the PDF
of the normalized work done by the Gaussian Ornstein-
Uhlenbeck force on the colloidal particle for different values
of the parameter α. (b) Asymmetry function of the PDF of
the normalized work done by the Gaussian white force on the
cantilever for different values of the parameter α. The thick
solid line represents the analytical expression given by eq. (11).

viscous dissipation whereas its coupling with the external
forcing plays the role of a non-equilibrium thermal bath
at an effective temperature2 k〈x2〉/kB = (1+α)T ≈ αT .
The prefactor τc/τ is introduced in such a way that w

∗
τ

represents the average normalized work done during the
largest correlation time of the system. Accordingly, the
asymmetry function must be redefined as

ρ∗(w∗) = lim
τ/τc→∞

τc

τ
ln
P (w∗τ =w∗)
P (w∗τ =−w∗)

. (10)

Figure 6(a) shows the asymmetry function ρ∗ for the
normalized work w∗τ on the colloidal particle at large values
of α for which eq. (6) is violated. The timescale τc in the
computation of (9) and (10) is taken as the correlation
time (τ0 = 25ms) of the Ornstein-Uhlenbeck forcing of
eq. (2). For comparison we also show the corresponding
curves at α= 0.20, 0.51 as blue circles and red squares
respectively, for which eq. (6) holds. The convergence to a
master curve is verified, which means that for a sufficiently
strong forcing the thermal bath acts only as a passive

2The parameter α is an unambiguous choice to define the effective
temperature out of equilibrium both for the harmonic oscillator and
the trapped Brownian particle since 〈x2〉 is finite.
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reservoir for the energy dissipation without providing any
important contribution to the energy injection into the
system. Evidently, the normalized asymmetry function for
the values α that verify the FT lie far from the master
curve. We point out that the transition to the limit α� 1
is rather continuous since intermediate regimes occur,
as observed for α= 1.84. In this case neither the FT is
satisfied as shown previously in fig. 3 nor the master
curve is attained since the strength of thermal noise is
still comparable to that of the external noise.
The results for the normalized asymmetry function

of the work done on the cantilever by the external
force are shown in fig. 6(b). The curve corresponding
to the verification of the FT for α= 0.19 is also plotted
for comparison. The convergence to a master curve is
also checked as the value of α increases. Indeed, when
comparing our normalized experimental curves with the
analytic expression carried out by [13] for the asymmetry
function of the work distribution on a Brownian particle
driven entirely by a Gaussian white noise

ρ∗(w∗) =




4w∗ w∗ < 1/3
7

4
w∗+

3

2
− 1

4w∗
w∗ � 1/3

, (11)

we check that the assumption of the convergence of the
energy injection process into the cantilever to that of
a Langevin dynamics for a harmonic oscillator entirely
dominated by the external noise is valid. Finite α correc-
tions can be detected for large values of w∗τ indicating
that the thermal bath still influences the energy injection
into the cantilever. This corrections seem to vanish as the
system is driven farther from equilibrium, as observed in
fig. 6 for α= 22.10.
Finally, we point out that the profile of the master

curve strongly depends on the kind of stochastic force: a
Gaussian Ornstein-Uhlenbeck process in the first example
and a Gaussian white noise in the second one. Non-
Gaussian extensions of the external random force are
expected to lead to striking modification of the fluctuation
relations in the limit α� 1, as recently investigated for an
asymmetric Poissonian shot noise [12].

Conclusions. – We have studied the FT for the work
fluctuations in two experimental systems in contact with a
thermal bath and driven out of equilibrium by a stochastic
force. The main result of our study is that the validity of
FT is controlled by the parameter α. For small α� 1 we
have shown that the validity of the steady-state FT is a
very robust result regardless of the details of the intrinsic
dynamics of the system (first- and second-order Langevin
dynamics) and the statistical properties of the forcing
(white and colored Gaussian noise). Indeed these specific
features vanish when the integration of wτ is performed
for τ much larger than the largest correlation time of the
system.
In contrast for large α� 1, when the randomness of

the system becomes dominated by the external stochastic

forcing, we have shown that FT is violated. For α� 1
the results at different driving amplitudes can be set on a
master curve by defining a suitable effective temperature
which is a function of α. We have shown that this master
curve is system dependent.

∗ ∗ ∗
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