
                          

Phase structure of difermion condensates in the
Nambu–Jona-Lasinio model: The size-dependent
properties
To cite this article: L. M. Abreu et al 2010 EPL 90 11001

 

View the article online for updates and enhancements.

You may also like
Effects of the quark anomalous magnetic
moment in the thermodynamical properties
of the magnetized two flavor
Nambu–Jona-Lasinio model
Ricardo L. S. Farias, Rodrigo M. Nunes,
William R. Tavares et al.

-

Strangeness content of the pion in the
U(3) Nambu–Jona–Lasinio model
Fábio L Braghin

-

From hadrons to quarks in neutron stars: a
review
Gordon Baym, Tetsuo Hatsuda, Toru Kojo
et al.

-

This content was downloaded from IP address 3.138.33.178 on 25/04/2024 at 16:21

https://doi.org/10.1209/0295-5075/90/11001
https://iopscience.iop.org/article/10.1088/1742-6596/2340/1/012023
https://iopscience.iop.org/article/10.1088/1742-6596/2340/1/012023
https://iopscience.iop.org/article/10.1088/1742-6596/2340/1/012023
https://iopscience.iop.org/article/10.1088/1742-6596/2340/1/012023
https://iopscience.iop.org/article/10.1088/1361-6471/ac4d79
https://iopscience.iop.org/article/10.1088/1361-6471/ac4d79
https://iopscience.iop.org/article/10.1088/1361-6633/aaae14
https://iopscience.iop.org/article/10.1088/1361-6633/aaae14


April 2010

EPL, 90 (2010) 11001 www.epljournal.org

doi: 10.1209/0295-5075/90/11001

Phase structure of difermion condensates
in the Nambu–Jona-Lasinio model:
The size-dependent properties

L. M. Abreu
1(a)
, A. P. C. Malbouisson

2 and J. M. C. Malbouisson1

1 Instituto de F́ısica, Universidade Federal da Bahia - 40210-340, Salvador, BA, Brazil
2 Centro Brasileiro de Pesquisas F́ısicas, MCT - 22290-180, Rio de Janeiro, RJ, Brazil

received 29 January 2010; accepted in final form 30 March 2010
published online 5 May 2010

PACS 11.10.Kk – Field theories in dimensions other than four
PACS 11.30.Qc – Spontaneous and radiative symmetry breaking
PACS 11.10.Wx – Finite-temperature field theory

Abstract – We investigate finite-size effects on the phase structure of difermion condensates
at finite temperature and density in the framework of the two-dimensional large-N limit
Nambu–Jona-Lasinio model. We take into account size-dependent effects on the system by making
use of zeta-function and compactification methods. The thermodynamic potential and the gap
equation for the difermion condensed phase are then derived in the mean-field approximation.
Size-dependent critical lines separating trivial and non-trivial difermion condensed phases are
obtained imposing either periodic or anti-periodic boundary conditions on the spatial coordinate.

open  access Copyright c© EPLA, 2010

Introduction. – The analysis of the phase diagram
of strongly interacting matter has been a subject of
great interest in recent years. Due to the complex field-
theoretical structure of quantum chromodynamics (QCD),
simplified effective theories, particularly in their low-
dimensional versions, have been largely employed to get,
analytically, insights on this phase structure. In this
sense, four-fermion models, like the Nambu–Jona-Lasinio
(NJL) model [1], are very useful for the investigation
of the breakdown of dynamical symmetries. Nowadays
the NJL model reveals convenient in the description of
the phase diagram of both chiral broken phase (quark-
antiquark condensation) and color superconducting phase
(diquark condensation), specially with the system under
certain conditions, like finite temperature, finite chemical
potential, external gauge field, among others [2–4].
Another interesting aspect in the study of these kind

of phase transitions is the relevance of the fluctuations
due to finite-size effects in the phase diagram. With this
purpose, different approaches have been used to study
various aspects of these effects [5–17]. In this letter, we
are interested in the investigation of the size dependence
of the phase structure of difermion condensates, in the
framework of the two-dimensional large-N NJL model
at finite temperature and density. To include finite-size

(a)E-mail: luciano.abreu@ufba.br

effects, we make use of the techniques introduced in
refs. [16,17]. This is carried out through zeta-function
regularization and compactification methods [18,19].
This approach allows to determine analytically the size-
dependence of the effective potential and the gap equation.
Then, phase diagrams at finite temperature and chemical
potential, where the symmetric and difermion condensed
phases are separated by size-dependent critical lines, are
obtained.
Let us remark that our interest in the two-dimensional

version of NJL model is an attempt to investigate the
qualitative aspects relevant to the difermion condensation
under the influence of size finiteness of the system. In fact
some properties of these kind of models are similar in lower
and higher dimensions, and so, we can expect that results
obtained in the 2D NJL model reflect properties of a more
realistic 4D model.
It could be argued that spontaneous symmetry break-

ing (SSB) does not occur in two-dimensional theories,
as a consequence of the Mermin-Wagner-Coleman theo-
rem [20]. The reason is that the presence of strong infrared
fluctuations destroys the long-range order, and conse-
quently the SSB is denied. However, as demonstrated in
ref. [21], this theorem can be circumvented in the following
way: in a N -component formulation, the two-point corre-
lation function for a certain order parameter φ has the
form 〈φ∗(x)φ(y)〉 ∼ |x− y|−1/N . At finite N there is no
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SSB in long range, as expected from the Mermin-Wagner-
Coleman theorem. On the other hand, in the large-N
limit, for |x− y| →∞ the two-point function becomes a
non-vanishing constant, allowing the SSB. Thus, it is legit-
imate to study SSB effects in terms of low-dimensional
NJL model in the large-N limit, as can be seen in
the literature [5,6,15,22–30].
We organize the letter as follows. We start by calcu-

lating the effective potential of the NJL model in
the mean-field approximation, using the zeta-function
method. The analysis of symmetry breaking induced by
the difermion condensate is also done. In the following,
the size-dependent gap equation is discussed. After, the
phase diagrams are shown and analyzed. We finalize
presenting some concluding remarks.

The model. – Our starting point is the two-
dimensional massless version of the extended NJL model
described by the Lagrangian density [23,24,27],

L = ψ̄(i)
(
i �∂−µγ0) ψ(i)+ gS

2

(
ψ̄(i)ψ(i)

)2
+ gD

(
ψ̄(i)γ5ψ

(j)
)(

ψ̄(i)γ5ψ
(j)
)
, (1)

where ψ and ψ̄ are the fermion fields carrying N flavors
(i, j = 1, . . . , N ; repeated flavor indices are summed),
µ is the chemical potential and the γ matrices are in a
representation of two-dimensional space, with γ5 = γ0γ1.
Notice that the Lagrangian density possess O(N) flavor
symmetry and discrete chiral symmetry.
We choose the particular representation for the

γ-matrices

γ0 =

(
0 1
1 0

)
, γ1 =

(
0 −1
1 0

)
. (2)

In this case, the charge conjugation is implemented by
C =−γ1. Then, the pairing term reads

gD

(
ψ̄(i)γ5ψ

(j)
)(

ψ̄(i)γ5ψ
(j)
)
=

−gD
2

(
εαβψ

†(i)
α ψ

†(i)
β

)(
εγδψ

(j)
γ ψ

(j)
δ

)
. (3)

Since we are specifically interested on size effects of the
pure difermion condensate sector, to make the treatment
clearer, we suppress the scalar self-interaction setting
gS = 0 in the Lagrangian density (1).
We perform the bosonization by introducing the auxil-

iary field ∆ such that it is associated with the bilinear

form in the way: gDεγδψ
(j)
γ ψ

(j)
δ ≡∆. Therefore the modi-

fied Lagrangian density becomes

L̃ = ψ̄(i)
(
i �∂−µγ0) ψ(i)− 1

2
∆†
(
εγδψ

(j)
γ ψ

(j)
δ

)
+
1

2

(
εαβψ

†(i)
α ψ

†(i)
β

)
∆− 1

2gD
|∆|2. (4)

Thus, the auxiliary field ∆ plays the role of a difermion
condensate, such that when it has a non-vanishing value,
the system is in difermion condensation phase.

Then integration over ψ and ψ† generates the following
effective action:

Γeff (|∆|) =
∫
d2x

(
− 1
2gD
|∆|2
)
− i

2
Tr lnD , (5)

where

D=

( −h γ1∆†

−γ1∆ hT

)
, (6)

with

h = i∂0+ iγ
5∂1−µ,

hT =−i∂0− iγ5∂1−µ. (7)

Notice that the trace over the flavor indices in eq. (5)
gives a factor N , which allow us to set in the large-N limit
gDN =GD, with GD fixed at N →∞. Thus, the effective
potential is obtained in the mean-field approximation
(i.e. |∆| uniform) from eq. (5),

Ueff (∆) =
|∆|2
2GD

+
i

2
tr ln (hTh)

+
i

2
tr ln
[
1− |∆|2(hT )−1γ1(h)−1γ1],

(8)

where tr means trace over spins and coordinates only.
To take into account finite-temperature and finite-size

effects on the phase structure of this model, we work in
the Euclidean space, with imaginary time and the spatial
coordinate being compactified. We denote the Euclidean
coordinate vectors by xE = (x0, x), in which x0 ∈ [0, β] and
x∈ [0, L], with β = T−1 (T being the temperature and L is
the size of the system). This corresponds to the generalized
Matsubara prescription,∫

d2p

(2π)2
f(p0, p) → 1

βL

∞∑
n0,n=−∞

f(pn0 , pn),

p0 → pn0 =
2π

β

(
n0+

1

2

)
; n0 ∈Z,

p → pn =
2π

L
(n+ c); n∈Z,

where c= 0 and c= 12 for periodic and for antiperiodic
spatial boundary conditions, respectively.
Thus, after some manipulations, the effective potential

carrying finite-temperature and finite-size effects becomes,
by omitting terms independent of |∆|,

Uβ,Leff (|∆|) =
|∆|2
2GD

− 1

2βL

∑
±

∞∑
n0,n=−∞

ln

[
4π2

β2

(
n0+

1

2

)2

+
4π2

L2

(
|n+ c| ± µL

2π

)2
+ |∆|2

]
. (9)
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The effective potential in eq. (9) can be rewritten in
terms of Epstein zeta-functions, Y (s), that is

Uβ,Leff (|∆|) =
|∆|2
2GD

+
1

2βL

∑
±

d

ds
Y ±∆ (s)

∣∣
s=0

, (10)

where

Y ±∆ (s) =
∞∑

n0,n=−∞

[
4π2

β2

(
n0+

1

2

)2

+
4π2

L2

(
|n+ c| ± µL

2π

)2
+ |∆|2

]−s
. (11)

Hence, the analysis of the phase diagram of the model
is performed through the solutions of the gap equation

∂

∂|∆|U
β,L
eff,R (|∆|) = 0, (12)

from which we find that ∆ appears here as the order
parameter of the difermion condensate phase transition.
So, in the following we discuss the size effects on the gap

equation. However, for completeness and to set up the free
space parameters, in the next section we treat the model
in the absence of spatial boundaries at zero temperature.

The model at zero-temperature and without
spatial boundaries. – Let us look at the model intro-
duced in the previous section without compactification
of the spatial dimension [31] and at zero temperature.
Taking µ= T = 1/L= 0 in eq. (8), the renormalization
condition is

1

GDR
=

∂2

∂|∆|2Ueff (|∆|)
∣∣∣∣
|∆|=λ

=
1

GD
−
[
(D− 1)
(4π)D/2

Γ

(
1− D

2

)
λD−2

]
D=2

,

(13)

where λ is a scale parameter and GDR is the renormalized
coupling constant.
In this case the gap equation is

∂

∂|∆|Ueff (|∆|)
∣∣∣∣
|∆|=∆0

= 0, (14)

where ∆0 is the order parameter for the model at zero
temperature, in the absence of spatial boundaries and
at vanishing chemical potential. Then, in terms of the
renormalized coupling constant, we obtain

1

GDR
=
1

2π
− 1
4π
ln
∆20
λ2
. (15)

It results from eqs. (13)–(15), that we can write the
renormalized effective potential as

Ueff,R (|∆|) = |∆|
2

2

(
− 1
4π
+
1

4π
ln
|∆|2
∆20

)
. (16)

Hence, at gap solution |∆|=∆0, eq. (16) yields

Ueff,R (∆0) =−∆
2
0

8π
, (17)

which is similar to that obtained in refs. [23,24].

The model at finite temperature and with the
presence of spatial boundaries. – Now we can analyze
the model taking into account temperature, chemical
potential and finite-size effects. To proceed, the renor-
malization prescription performed in the previous section
allows us to work with the T, µ, L-dependent renormalized
effective potential, written as

Uβ,Leff,R (|∆|) = −
1

4π
|∆|2 ln ∆0

λ

+
1

2βL

∑
±
FP

[
d

ds
Y ±∆ (s)

∣∣
s=0

+ lnλ2Y ±∆ (0)
]
, (18)

where FP[. . .] means the finite part of the terms between
brackets; this notation is in agreement with refs. [16,18].
To study the solutions of the gap equation (12), we must

perform the analytical continuation of the Epstein zeta-
function Y ±∆ in eq. (11), given by [16–18]

Y ±∆ (s) =
β

2π

Γ
(
s− 12

)
Γ(s)

(
4π2

L2

)−s∑
±

[
ζ

(
2 s, c± µL

2π

)

+ζ

(
2 s, 1− c∓ µL

2π

)]

+
2β

2s− 12
√
πΓ(s)

∑
±

∞∑
n0=1

∞∑
n=−∞

(−1)n0

×

 n0β√
4π2

L2

(
|n+ 12 | ± µL2π

)2
+ |∆|2


s− 12

×Ks− 12

n0β
√
4π2

L2

(
|n+ 1

2
| ± µL

2π

)2
+ |∆|2

 ,
(19)

where ζ(s, a) =
∑∞
n=0(n+ a)

−s is the Hurwitz zeta-
function. Also, we have fixed λ as the scale of the model,
redefining the relevant quantities as ∆0/λ→∆0, Lλ→L,
µ/λ→ µ and βλ→ β.
Notice that for the gap equation the Epstein zeta-

function in eq. (19) is taken at s= 1. Thus, the gap
equation (already without the infinities, suppressed
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Fig. 1: The phase diagram in the (µ, T )-plane, at fixed x=
L−1 = 0.2 in the antiperiodic case. Dashed, dotted and solid
lines represent ∆0 = 1, 1/4 and 1/8, respectively. The difermion
condensate region corresponds to the region below each line.

by minimal subtraction) in the particular situation of
∆→ 0 is

− 2 ln ∆0L
4π
+ψ

(
1

2
+
µL

2π

)
+ψ

(
1

2
− µL

2π

)

− 4
L

∑
±

∞∑
n0=1

∞∑
n=−∞

(−1)n0

 n0β√
4π2

L2

(
|n+ 12 | ± µL2π

)2

1
2

×K 1
2

n0β
√
4π2

L2

(
|n+ 1

2
| ± µL

2π

)2= 0, (20)

for antiperiodic conditions on the spatial coordinate, and

− 2 ln ∆0L
4π
+ψ

(
µL

2π

)
+ψ

(
1+

µL

2π

)
+2ψ

(
1− µL

2π

)
+
2π

µL
− 4
L

∑
±

∞∑
n0=1

∞∑
n=−∞

(−1)n0

×

 n0β√
4π2

L2

(
|n| ± µL2π

)2

1
2

×K 1
2

n0β
√
4π2

L2

(
|n| ± µL

2π

)2= 0, (21)

for periodic conditions.

Phase structure. – Now let us analyze the size-
dependent fermion-fermion pairing phase structure. We

0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6
�

0

0.02

0.04

0.06

0.08

0.1

0.12

T
Fig. 2: The phase diagram in the (µ, T )-plane, at ∆0 =
1/8 in the antiperiodic case. Dashed, dotted and solid lines
represent the values x=L−1 = 0.2, 0.25 and 0.3, respectively.
The difermion condensate region corresponds to the region
below each line.

remark that the gap equations (20) and (21) in the
previous section were obtained in the limit ∆→ 0, which
is appropriate for a second-order phase transition between
the symmetric phase and the difermion condensed phase.
In fig. 1 the phase diagram in the (T, µ)-plane is

displayed in the cases of different values of ∆0 at a
fixed value of x= 1/L for the gap equation in eq. (20)
(antiperiodic boundary conditions). In accordance with
the results of ref. [31] for the system in bulk form, for
small values of ∆0 the difermion condensed phase appears
at low temperature and at high chemical potential; this
is expected in phase diagrams of strongly interacting
matter. On the other hand, as ∆0 increases, the difermion
condensed phase region enlarges, reaching low values of µ
and higher values of T .
In fig. 2 is plotted the phase diagram of the system

in the (T, µ)-plane at fixed ∆0, but with different values
of the inverse of the size of the system, x= 1/L, in the
antiperiodic case. The values of the chemical potential
for which the system undergoes the phase transition are
µ≈ 0.24, 0.36 and 0.48 for x=L−1 = 0.2, 0.25 and 0.3,
respectively, for the choice ∆0 = 1/8. Thus, we see that
when the size of the system decreases, greater values of
the chemical potential are necessary to reach the difermion
condensed phase region. On the other hand, for smaller
sizes, this region can be reached for greater temperatures.
The case of periodic boundary conditions corresponds to

the gap equation given by eq. (21). The phase structure
in the (T, µ)-plane is displayed in figs. 3 and 4. In fig. 3
different values of ∆0 are taken at fixed x= 1/L, while
in fig. 4 different values of x= 1/L at fixed ∆0 are
considered. The properties of these phase diagrams are
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Fig. 3: The phase diagram in the (µ, T )-plane, at fixed
x=L−1 = 0.2 in the periodic case. Dashed, dotted and solid
lines represent ∆0 = 1/4, 1/8 and 1/16, respectively. The difer-
mion condensate region corresponds to the region below each
line.
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Fig. 4: The phase diagram in the (µ, T )-plane, at ∆0 = 1/4 in
the periodic case. Dashed, dotted and solid lines represent the
values x=L−1 = 0.2, 0.25 and 0.3, respectively. The difermion
condensate region corresponds to the region below each line.

similar to those in the antiperiodic case. The difference
is in the choice of values of ∆0 giving similar results.
This can be seen comparing figs. 1 and 3, and also in the
comparison between figs. 2 and 4. The periodic situation
fits qualitatively better with the phase diagram of strongly
interacting matter for greater values of ∆0 than in the
antiperiodic case. In addition, from fig. 4, we observe that
the phase transition occurs at µ≈ 0.51, 0.75 and 0.98 for

x=L−1 = 0.2, 0.25 and 0.3, respectively, for the choice
∆0 = 1/4.

Concluding remarks. – In this work we have investi-
gated finite-size effects on the phase structure of difermion
condensates at finite temperature and density, in the
framework of the two-dimensional NJL model in the
large-N limit. We have employed zeta-function regular-
ization and compactification methods in the mean-field
approximation.
The phase structure of this model was studied from

the gap equation. Then, size-dependent critical curves
that separate the symmetric and the difermion condensed
phases for a second-order phase transition have been
obtained for antiperiodic and periodic boundary condi-
tions on the spatial coordinate.
We have seen that the critical lines are sensitive to

changes of the parameter ∆0; in particular, the case
of antiperiodic boundary conditions needs lower values
of ∆0 to generate, with respect to the periodic case, a
phase diagram qualitatively similar to the one expected
for strongly interacting matter.
In addition, we have shown that, as the size of the

system decreases, greater values of the chemical potential
are necessary to reach the region of difermion condensed
phase, in both situations of antiperiodic and periodic
boundary conditions. Possible extensions of this work are
the investigation of the model in four dimensions, as well
as the study of full phase structure.
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