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Abstract – We obtain measurements of the elastic energy of short (18–30 bp) molecules of ds
DNA constrained into a sharply bent conformation, using a thermodynamic method with the DNA
in solution. We consider the case where there is one nick in the ds DNA, and find that the system
develops a kink at a critical torque τc ≈ 27 pN× nm. In this regime the elastic energy is linear in
the end-to-end distance (EED). For smaller torques the DNA is smoothly bent and described by
the worm-like–chain energy, which is also approximately linear in the EED, but with a different
slope. Thus we access both the high and low elastic energy regimes, and the transition between
the two.

Copyright c© EPLA, 2010

Introduction. – The elastic energy of constrained
configurations plays an important role in the behavior
of proteins and DNA, both for natural and artificial
systems. We are interested in the elastic behavior of “DNA
springs”, which have been recently used to mechanically
perturb the conformation of proteins, ribozymes, and
peptides, with a view of achieving mechanical control
over a variety of chemical reactions [1–6]. In the protein-
DNA chimeras [7], a ds DNA molecule of contour length
L∼ 10–20 nm (30–60 bp) is attached by the ends to two
spots on the surface of the protein typically 3–4 nm apart,
so that if the protein is not greatly deformed then the
DNA is sharply bent, i.e. x�L� ld, where x is the end-
to-end distance (EED) of the DNA, L the contour length,
ld ≈ 50 nm the persistence length of ds DNA.
The use of DNA oligomers in these highly bent config-

urations to generate known forces (acting on the protein)
requires an accurate model of DNA mechanics at length
scales well below the thermal persistence length. While
the elastic behavior of DNA in the opposite limit (L� ld)
is well known to agree with the worm-like–chain model,
as shown by single-molecule pulling experiments [8], the
behavior for sharp bending has proven more difficult to
characterize and understand. Understanding this regime
of large deformations, however, has broad biophysical
implications for physiologically relevant protein-DNA

(a)E-mail: zocchi@physics.ucla.edu

interactions [9] and for DNA packaging in, e.g., viruses.
In general, biomolecules deform when they bind each
other and their substrates; it has been proposed recently
that such induced fit [10] mechanisms may optimize
the specificity of molecular recognition, even though the
elastic energy cost of the deformation in effect lowers
the binding affinity [11,12]. Thus it is becoming increas-
ingly interesting to determine the elastic energy cost of
equilibrium deformations of bio-molecules, DNA in this
case. Finally, the regime of large deformations points to
new problems in polymer physics; for all of these reasons
the short length scale mechanics of DNA has received
considerable attention recently.
Deviations from the WLC elastic energy E/L=

B/(2R2) are expected for R� ld, where R is the radius
of curvature and B the bending modulus (related to ld by
B = kBT ld), because of bubble formation in the DNA [13].
Theoretical models have been developed that couple long
length scale conformational degrees of freedom to such
local-structural modifications [14]. Generically, these allow
for the generation of localized defects under applied stress
and the localization of strain at these points along the
polymer chain. The result is a nonlinear strain softening
of the polymer under sufficiently large imposed bends.
Some results from cyclization experiments seemed to

exhibit this nonlinearity [15]; however, these measure-
ments were later re-interpreted as in agreement with the
WLC [16]. A recent AFM study of the conformations of
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Fig. 1: (Colour on-line) Cartoon of the monomer-dimer equi-
librium used to measure the elastic energy of the monomers.
Nd is the number of base pairs in the ds part of the monomer
(which contains a nick); Ns the number of bases in the ss part.
x is the EED of the ss part (and ds part).

DNA adsorbed on a surface finds, on the other hand,
that the statistics is best described by a linear (rather
than quadratic) dependence of the energy on the bending
angle [17,18]; however the proportionality constant then
depends on the length scale chosen to coarse-grain the
AFM images [17]. In these experiments the mechanical
boundary conditions are not specified: one measures ther-
mal fluctuations.

Experiment. – We approach the problem with the
system shown in fig. 1. The sequence of two synthetic DNA
oligomers is designed to produce, upon hybridization, a
stressed molecule where the ds DNA part (which contains
one nick in the middle) is bent and the ss part is
stretched. This is mechanically similar to the protein-DNA
chimeras [4,19–21], with the protein replaced by a short
ss DNA element. Unlike the protein case, the stretching
elasticity of ss DNA is quantitatively known. We measure
the total elastic energy Etot of the molecule, as a function
of Ns (the number of bases in the ss part, fig. 1) at fixed
Nd (the number of bp in the ds part). This energy is the
sum Etot =Es+Ed, where Es (Ed) is the elastic energy
in the ss (ds) part of the molecule. Using the condition for
mechanical equilibrium

−∂Es
∂x

∣∣∣∣
xeq

=
∂Ed

∂x

∣∣∣∣
xeq

, (1)

where x is the EED of the ss (and the ds) part (xeq
is its equilibrium value), the known form of Es(x), and
a polynomial expansion for the energy of the ds DNA
part, we extract from the measurements Ed(x), i.e. the
mechanical response of the DNA spring.
The energy Etot(Ns) is measured using a thermo-

dynamic method which we introduced previously for
the protein-DNA chimeras [20,21]. Referring to fig. 1,
internal stresses in these DNA molecules can be relaxed

by forming dimers, where the ds DNA is not bent and
the ss DNA is not (much) stretched. Because the possi-
ble base pairings are the same for two monomers and one
dimer, the free-energy difference between the two species
is essentially the elastic energy of the monomers. Writing
the chemical potentials for monomers and dimers:

µM =Eel+ kBT lnXM ; µD = kBT lnXD, (2)

where XM , XD are the mole fractions of monomers and
dimers and Eel the elastic energy of the monomer, at
equilibrium (2µM −µD = 0) we have

Eel =
1

2
kBT

XD

X2M
. (3)

The concentrations of monomers and dimers are measured
from the intensities of the corresponding gel electrophore-
sis bands (fig. 2), using suitable calibrations. As the
sample runs through the gel, a certain amount of monomer
dimer interconversion occurs, visible as interband smear in
fig. 2(a). To extract the equilibrium (i.e. initial) monomer
and dimer amounts we use a simple reaction-diffusion
model where monomers and dimers have different mobili-
ties in the gel and given rates of inter-conversion; we adjust
the model parameters to fit, with fixed parameters, the gel
profiles at the different times, and can thus extrapolate
the monomer and dimer concentrations at zero time, i.e.
the equilibrium concentrations. An example of these fits is
shown in fig. 2(b). The mobilities are measured from the
time-lapse gels (fig. 2); the interconversion rate is essen-
tially fixed by the requirement of reproducing the inter-
band intensity at the different times (fig. 2(b)). Finally,
the results are rather insensitive to the model’s parame-
ters: even setting the interconversion rates to zero (which
does not fit the gel profiles well) makes a difference of typi-
cally ∼15% in the extrapolated zero time concentrations,
which after taking the log in eq. (3) changes the energy by
only ∼0.2kBT .
The elastic energy of the monomer is obtained from

the measured equilibrium concentrations using (3).
Figure 3(a) shows this elastic energy for a series of mole-
cules with fixed Nd = 30 and increasing Ns. We applied
a correction to the energy given by (3), reflecting the
electrostatic and strain energy in the dimer (fig. 1) due
to the electrostatic repulsion between the ds DNA parts,
which stretches the ss parts. Specifically, we minimized
the energy Ecorrection = (EElectro+EStrain)/2, made
up of the sum of the screened electrostatic interaction
between discrete charges distributed on the two ds DNA
backbones using a Debye length of 1 nm and the elastic
energy of two stretched ss DNA strands each of nk Kuhn
lengths lk ∼ 1.5 nm, treating each as a Hookean spring
with spring constant 3kBT/2nkl

2
k. We assume the simple

planar geometry of fig. 1, so the EED determines all
the distances. The minimum of this energy (i.e. for the
equilibrium value of the EED) corrects the bare energy
(squares, fig. 3(a)) to give the full energy of the dimers
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(a)

(b)

Fig. 2: (Colour on-line) a) Gel electrophoresis of one sample
(Nd = 30, Ns = 15); all lanes contain the same sample, but
different lanes were loaded at successive times from left to right
in order to follow the evolution of the bands as they move
through the gel. b) Intensity profiles of the left three lanes in
a), and the fit with the reaction-diffusion model used to extract
the equilibrium values (initial values) of the concentrations of
monomers and dimers.

(a)

(b)

Fig. 3: (Colour on-line) a) The total elastic energy of the
monomer of fig. 1, Etot, vs. Ns, for Nd = 30. The squares are
the values obtained from eq. (3) using the monomer and dimer
concentrations measured from the gels. The circles are the
same values corrected to take into account the electrostatic
energy of the dimer (see text). Thus the circles represent the
actual elastic energy of the monomer. b) Etot vs. Ns, for
Nd = 18 (including the correction mentioned in a). The change
of behavior for Ns ≈ 23 is evident to the meanest intellect.

(circles, fig. 3(a)). This correction is also applied to the
data of fig. 3(b).

Discussion. – Referring to fig. 1, the monomer can
be viewed as two (nonlinear) springs, representing the ds
and ss part, constrained to have the same EED. Increasing
Ns means softening the ss spring. The experiment shows
(fig. 3(a)) that the elastic energy Etot is linear with Ns
and in fact almost constant in the regime explored. This
means that, in this regime, the elastic energy vs. EED of
the bent ds DNA, Ed(x), is linear in x (i.e. this regime
is constant force), as follows. We write the energy of the
(stretched) ss part of the molecule as

Es(x) =
9kBT

4Nsl2s
[x2+O(x3)+ · · ·], (4)
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where ls ≈ 0.75 nm is the persistence length of ss DNA [22]
and we take the number of persistence lengths equal to
Ns/3. The terms beyond the first can be obtained for
example from the Marko-Siggia interpolation formula [23],
but we neglect them here because we are in the regime
(verified a posteriori) x�Ns ls. For the energy of the ds
part of the molecule we make the Ansatz

Ed(x) =E0− ax− · · · , (5)

a> 0, again valid for small x. From the condition of
mechanical equilibrium (1) and (4), (5) we find the
equilibrium total energy

Etot =Ed(xeq)+Es(xeq) =E0− a
2l2s
9kBT

Ns (6)

which is linear in Ns as seen in the experiments (fig. 3(a)).
From the experimental measurements of Etot vs. Ns
(fig. 2), using (6), we determine E0 and a, i.e. the form of
Ed(x) (see (5)) in this regime. This is a regime where, in
contrast to the WLC regime of small bending, the energy
is linear in the EED, i.e. the force is constant. It must
correspond to the formation of a kink in the middle of the
ds DNA (at the position of the nick), characterized by a
critical (constant) torque

τc ≈ aL, (7)

where L=Nd× 0.33 nm is the contour length of the ds
DNA. From the data of fig. 3(a), using (6) and (7) we find

a≈ 2.73± 0.06 pN; τc ≈ 27.0± 0.6 pN×nm. (8)

Eventually (for large Ns) the energy of fig. 3(a) must
go over to the WLC form and drop to zero; to observe the
cross-over we reduced Nd to 18 and obtained the data of
fig. 3(b). It is evident that there is a transition for Ns ≈ 23,
which we associate with the formation of the kink: to the
left of the transition region the equilibrium conformation
has a kink while to the right the ds DNA is smoothly bent.
Because Es(x) is a smooth function, it is evident from fig. 3
that the force |∂Ed/∂x| actually decreases for decreasing
x as the kink develops. In fact, in the region 22�Ns � 30
(fig. 3(b)) we observe in the gels a splitting of the monomer
band (fig. 4), which we associate with the coexistence
of two different conformations of the monomer: ds DNA
kinked (and ss DNA compact) vs. ds DNA smoothly bent
(and ss DNA stretched). The ratio of the free energies of
the two conformations goes from <1 to >1 as Ns moves
through the transition, as seen from the relative brightness
of the two monomer bands. In this region we calculate
Etot (fig. 3(b)) as the statistical average Etot = (X1E1+
X2E2)/(X1+X2); where E1 is calculated from (3) using
for XM the mole fraction X1 corresponding to one of the
monomer bands, and similarly for E2 . From the slope of
the linear part of the graph of fig. 3(b) (i.e. for Ns � 21)
we extract the parameter a for this case, and find a≈ 4.0±
0.2 pN, which using (7) gives τc ≈ 23.6± 1.4 pN×nm,
essentially consistent with (8) (considering that we are

Fig. 4: (Colour on-line) Gel electrophoresis of a sample with
Nd = 18, Ns = 26, showing the splitting of the monomer band,
with cartoons depicting the conformations attributed to the
different bands. The two lanes contain the same sample loaded
at different times. The gel runs downwards.

neglecting differences in the kink angle for the two cases).
In conclusion, in the transition region there are two
possible mechanical states (kinked and un-kinked) for this
system of two nonlinear springs. By tuning Ns the two
states can be made almost degenerate (as seen in fig. 4
where we have nearly the same equilibrium amounts of
the two different monomers).
We now extract the curve Ed(x) for 0� x�L using the

measurements of fig. 3(b). Our procedure is to guess a
form of Ed(x) and verify that in conjunction with the
known form of Es(x) it produces the measured Etot(Ns).
For Ed(x) we take a polynomial expression that behaves
like (5) for x�L and goes over to the WLC energy for
x≈L:

Ed(x) =E0− ax− bx5+ cx7; b, c > 0. (9)

The boundary conditions to ensure the latter property are

Ed(x=L) = 0;
∂Ed

∂x

∣∣∣∣
x=L

=−5
4

B

L2
, (10)

as explained below. The choice of the powers 5 and 7 is
somewhat arbitrary but these are the smallest exponents
which produce a good fit for the data of fig. 3(b). Once
these exponents are fixed, b and c are calculated from the
boundary conditions (10). For Es(x) we take (see (4)) the
first three terms in a polynomial expansion of the Marko-
Siggia formula [23]:

Es(x) =
9kBT

4Nsl2s

[
x2+

x3

Nsls
+
3x4

(Nsls)2

]
. (11)

From the condition of mechanical equilibrium (1) we
calculate the equilibrium EED xeq, and thus Etot(xeq) =
Es(xeq)+Ed(xeq). Figure 5 shows the energy of the ds
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Fig. 5: The elastic energy of the ds part of the molecule,
Ed(x), vs. the EED x. This energy (see (9)) gives rise to the
calculated Etot(Ns) plotted as a line in fig. 3(b). For reference,
we give the polynomial expression for this particular curve:
Ed(x) = 10.25− 1.0x− 1.63× 10−3x5+3.01× 10−5x7, where x
is the EED in nm and Ed is in units of kBT .

DNA which gives rise to the total energy Etot plotted in
fig. 3(b) together with the experimental measurements.
Two comments on this result. 1) The nonlinearity of

the coupled system (9), (11), (1) makes the location of the
knee in the graph of Etot vs. Ns (fig. 3(b)) depend sensi-
tively on the value of ls, offering a new way to measure
the persistence length of ss DNA, for short synthetic
sequences. We find that ls = 0.755 nm gives a good fit
(fig. 3(b)), exactly consistent with the literature value of
0.75 nm for this ionic strength [22]. 2) The second bound-
ary condition (10) comes from a simple, approximate,
analytical calculation of the energy of a slightly bent rod
with zero torque boundary condition at the ends, approx-
imating the rods shape with a 3d order polynomial, and
agrees within a few percent with the energy of the bent rod
calculated numerically from the known formulas [24]. The
main point is, the appropriate effective boundary condi-
tion (10) (effective because when Ed is of order 1 kBT
or smaller, thermal fluctuations are important and the
system is not purely mechanical) is the one corresponding
to infinitesimal bending of the rod. For a purely mechan-
ical rod the minimum energy solution would correspond
instead to infinitesimal compression, giving the bound-
ary condition (∂Ed/∂x)(x=L) = 0 instead of (10), but we
cannot fit the data of fig. 3(b) with this choice. In the
future, it would be interesting to investigate this point
with a finite-temperature model.

Conclusion. – In summary, we show experimentally
that short, nicked, ds DNA constrained to bend (fig. 1)
develops a (constant torque) kink at a critical torque
τc ≈ 27 pN×nm (for the present sequence). For τ > τc (the
regime x�L) the kinked solution is stable; for τ < τc (the

regime x≈L) the bent solution is stable. Both regimes,
and the transition region (fig. 3(b)) can be described using
a polynomial approximation to the energy Ed(x), which
allows to obtain, from the measured total elastic energy
Etot (fig. 3) the elastic energy of the bent (or kinked) ds
DNA as a function of EED (fig. 5). Thus we can now
measure experimentally the elastic energy and force which
can be obtained with a DNA molecular spring of given
sequence.
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