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Abstract – We add relaxation mechanisms that mimic the effect of temperature and non-
equilibrium driving to the recently proposed spiral model which jams at a critical density
ρc < 1. This enables us to explore unjamming by temperature or driving at ρc < ρ< 1. We
numerically calculate the relaxation time of the persistence function and its spatial heterogeneity.
We disentangle the three different relaxation mechanisms responsible for unjamming when varying
density, temperature, and driving strength, respectively. We show that the spatial scale of dynamic
heterogeneity depends on density much more strongly than on temperature and driving.

Copyright c© EPLA, 2010

Introduction. – Glass-forming liquids, colloids, emul-
sions, foams, and granular matter all develop sluggish
and heterogeneous dynamics as they approach the onset
of jamming. The slowing-down of the dynamics in these
systems with increasing density of the constituent parti-
cles, decreasing temperature, or decreasing the strength
of external driving forces is often summarized in the form
of a jamming phase diagram [1]. To date, most numer-
ical studies of this diagram have focused on particulate
models such as sphere packings. From a theoretical point
of view, however, simpler models are easier to understand.
Here, we introduce a lattice model with a phase diagram
(fig. 1(a)) that is similar to that of sphere packings, and
use it to study dynamic heterogeneities.
Experiments on granular [2] and colloidal [3] systems

show steady growth in dynamic heterogeneities as the
relaxation time increases with increasing density. In glass-
forming liquids, however, the scale of heterogeneities
remains modest even as the relaxation time increases by
more than 10 orders of magnitude with decreasing temper-
ature [4]. This difference may be due to the far greater
dynamic range measurable in glass-forming liquids [3].
Our model, however, suggests that this difference signals a
fundamental distinction between jamming due to density
as opposed to jamming by temperature or driving.
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Fig. 1: (Color online) a) Jamming phase diagram of density ρ,
temperature T , and driving v. Jammed phase is the thick red
line along the ρ-axis which terminates at ρc. Blue arrows are
the trajectories we investigate. b) The spiral model is defined
by dividing the neighbors of each site on the square lattice
into four pairs, labeled NE, SE, SW, and NW (see text).
c) Divergence of relaxation time as ρ→ ρc for T = 0 and v= 0,
with lattice size indicated in the legend.

At zero temperature and driving, sphere packings
undergo a jamming transition with density [5–7]. This
transition has a mixed nature in that the number of
interacting neighbors per sphere jumps discontinuously
from zero to the minimum number needed for mechanical
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stability, but there are diverging length scales [6–8].
Above the critical density, the spheres may be unjammed
either by raising temperature above a glass transition into
an equilibrium state or by applying shear stress above
a yield stress to drive the system into a homogeneous
non-equilibrium steady state.

Model. – To construct a lattice model with a similar
phase diagram, we start with a kinetically constrained
lattice-gas. In such models, occupied sites do not interact
but the dynamical rules governing changes in occupation
of a site depend on the occupation of neighboring sites.
This leads to dynamics that are increasingly slow and
heterogeneous as the fraction of occupied sites increases,
since increasingly larger regions are required to rearrange
collectively [9,10]1. In such models, the fraction of occu-
pied sites might either be interpreted as a density variable
or (in spin versions of the model) controlled by temper-
ature. Thus, temperature and density are equivalent
variables in such models, and cannot be controlled inde-
pendently of each other. In order to generalize to the case
where temperature and density are independent control
variables, we choose to associate the fraction of occupied
sites with density, ρ, so that a conventional kinetically
constrained model corresponds to our zero-temperature
model. Here we focus on the spiral model [12,13], defined
on the square lattice such that the occupation of a site can
only change if its (NE or SW) and (NW or SE) neighboring
pairs (see fig. 1(b)) are completely empty. This model jams
into a non-ergodic phase at ρc ≈ 0.705, which allows us to
study its behavior at ρc <ρ< 1 with non-zero tempera-
ture or driving. Such jamming-percolation models [14–17]
possess an additional important property: the jamming
transition at ρc has a mixed nature; the fraction of stuck
particles that cannot participate in rearrangements jumps
discontinuously as in a first-order transition, while time
and length scales diverge as in a second-order transi-
tion. For a recent investigation of the equilibrium and
non-equilibrium dynamics of the spiral model, see [18].
In the original spiral model the number of particles

was not conserved. Following [19], we modify the zero-
temperature stochastic dynamics so that instead of switch-
ing sites between being occupied and vacant we move a
particle to a neighboring site if the target site is vacant
and if the kinetic constraint described in fig. 1(b) holds
both before and after the move. We measure time in units
of attempted moves per particle.
We introduce temperature by softening the kinetic

constraints. Instead of preventing blocked moves, we allow
them with probability exp(−1/T ). Thus, for T = 0 we
recover the original model with rigid constraints. Note
that the system still has no interactions and that energy
is only associated with the virtual barrier the system has
to cross in a kinetically constrained move. For ρ > ρc, the
system is non-ergodic only at T = 0, since for arbitrarily

1For a review see [11] and references therein.

low temperature, kinetically constrained moves occur at a
slow but non-zero rate, hence the system may eventually
reach any configuration.
We drive the system into a non-equilibrium steady state

by inducing a current of particles in one direction (for
example, from left to right), as follows. In addition to
the afore-mentioned moves in which particles can move
into neighboring vacant sites subject to the soft (T > 0)
or rigid (T = 0) kinetic constraint, we introduce a second
type of move, in which a particle can move into the
neighboring site to its right if it is vacant, irrespective
of the kinetic constraints2. Such moves are attempted at
rate f , and we characterize the driving strength by the
average flow velocity v= (1− ρ)f induced by them. Note
that even for arbitrarily slow driving, the environment of
any blocked particle will eventually change such that the
particle will no longer be blocked and can move even under
the kinetically constrained dynamics3.
We could have chosen to soften the kinetic constraints in

more complicated ways that couple density to temperature
or driving to obtain more realistic results. The advantage
of our implementation is that the interplay of density,
temperature and driving appears in its purest, simplest
form.
We explored the model with rejection-free Monte Carlo

simulations, and established convergence of the results
with system size by comparing systems of 80× 80, 400×
400, and 2000× 2000 sites. To extract the relaxation time
and the scale of dynamic heterogeneities, we calculate
the persistence function, pi(t), defined as the probabil-
ity that particle i has not moved over a time interval t
(see footnote 4). At long waiting times we find either
exponential or stretched exponential decay, depending
on density, of the particle-averaged persistence function,
p(t)≡ 1/N∑i pi(t), where N is the number of particles
in the system; we extract the relaxation time τ from the
condition p(τ) = 1/e. We measure the dynamic hetero-
geneity in the standard way [22–25], by calculating the
variance of the persistence function

χ4(t) =N [〈p2(t)〉− 〈p(t)〉2], (1)

where 〈 〉 denotes an average over different stochastic real-
izations for the initial state and dynamics. This quantity
has been shown to reflect the spatial extent of dynamic
heterogeneities [2,26]. The idea behind this is that if relax-
ation is heterogeneous, different regions in space, or alter-
natively different copies of the system, relax at different
times, hence there is a large variance in p(t) between them.

2Note that our driving differs from non-isotropic attempt rates of
moves that are subject to the kinetic constraint [20,21]. Such driving
would not unjam the spiral model at ρ > ρc.
3For mechanical systems, stress is used as the non-equilibrium

axis in the jamming phase diagram, and there is a jammed region
below the yield stress. In our model we set the flow rate and do not
try to assign the stress required to generate it. Hence, the jammed
phase in fig. 1(a) reduces to a line.
4In order to correctly measure relaxation in the presence of

driving, the persistence function is defined only in terms of motion
along the vertical direction, perpendicular to the driving.
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Fig. 2: (Color online) a) Relaxation time vs. inverse tempera-
ture for various densities. b) Relaxation rate due to the temper-
ature mechanism at all densities may be collapsed to Arrhenius
form by normalizing RT by its T =∞ value given in the top
inset, and scaling T by the effective barrier height A(ρ) given
in the bottom inset.

In the absence of temperature or driving, relaxation
slows down with increasing density not only because each
particle is more likely to be blocked by its neighbors but
also because these neighbors are in turn blocked by their
neighbors and so on. Hence moving a particle requires a
collective motion of many other particles. In the spiral
model, as ρ→ ρc, the size of blocking clusters is expected
to diverge as log(L)∼ (ρc− ρ)−µ with µ= 0.64 [13,14].
Figure 1(c) shows that we find log(τ)∼ (ρc− ρ)−µ. This
is consistent with a scaling relation between length scales
and time scales of the form τ ∼Lz, so that log(τ)∼ log(L),
irrespective of the scaling exponent z.

Jamming mechanisms. – The behavior of the relax-
ation time as a function of temperature and density at zero
driving is summarized in fig. 2(a). As T → 0, τ diverges for
ρ > ρc, while for ρ < ρc it saturates to the finite T = 0 value
given in fig. 1c. The singularity at ρc and T = 0 affects the
behavior of τ(ρ, T ) nearby. However, the overall relaxation
rate we measure arises from a combination of two types
of physical processes, which may be attributed to density
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Fig. 3: (Color online) a) Relaxation time vs. inverse driving
for various densities (same legend as fig. 2). b) Collapse of
relaxation rate due to the driving mechanism for all densities by
scaling Rv by the v=∞ value and scaling by (v0/v)α. R∞v (ρ)
and v0(ρ) are given in the inset and α(ρ) is given in fig. 2(b).

and temperature separately. We demonstrate this by writ-
ing the relaxation rate as

1

τ(ρ, T )
=Rρ(ρ)+RT (ρ, T ). (2)

Here, Rρ ≡ 1/τ(ρ, T = 0) is the relaxation rate due to the
density mechanism, which represents processes subject
to the kinetic constraints in which the neighborhood of
a particle changes so that a previously blocked particle
can move. Thus, Rρ = 0 for ρ� ρc. Similarly, RT is
the relaxation rate due to the temperature mechanism,
representing the process in which a blocked particle moves
either by directly overcoming the kinetic constraint or by
becoming unblocked when one of its neighbors overcomes
its kinetic constraint by thermal activation. Clearly,

RT =
1

τ(ρ, T )
− 1

τ(ρ, T = 0)
. (3)

Figure 2(b) shows that RT has an Arrhenius dependence
on temperature: RT =R

∞
T exp(−A(ρ)/T ). Here, R∞T (ρ) is

the relaxation rate at T =∞, where the kinetic constraint
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becomes irrelevant. For ρ > ρc, the dominant process facil-
itated by thermal activation is the motion of a single
blocked particle moving at probability exp(−1/T ), there-
fore A≈ 1. For ρ� ρc, on the other hand, the density
and temperature mechanisms are inherently coupled since
moves are typically blocked by a large cluster of neighbors,
and there are multiple moves that can lead to unblocking a
single particle, hence A< 1. Such collective behavior only
for ρ < ρc and not for ρ > ρc, which eventually leads to the
non-trivial form of A(ρ), is another manifestation of the
mixed (or one-sided) nature of the jamming transition.
Figure 3(a) shows the relaxation time vs. driving for

various densities at zero temperature. We now write

1

τ(ρ, v)
=Rρ(ρ)+Rv(ρ, v), (4)

where Rv is the relaxation rate due to the driving mech-
anism, in which the neighborhood of a blocked particle
changes due to driving events that unblock it and enable
it to move subject to the kinetic constraint. We obtain
Rv by subtracting Rρ = 1/τ(ρ, v= 0) from 1/τ(ρ, v) and
show in fig. 3(b) that Rv/R

∞
v has the same dependence

on (v0/v)
α for all ρ. Here, R∞v (ρ) describes the relaxation

rate at infinite driving strength, v0(ρ) decreases monotoni-
cally with ρ, and α(ρ) behaves similarly to A(ρ) (see insets
to figs. 2(b) and 3(b)). Note that above ρc and at densi-
ties below ρc but away from the vicinity of the transition,
α≈ 1. Thus, Rv varies linearly with the flow velocity, v,
at small v, as expected. At higher v, for all densities, Rv
crosses over to a constant at v≈ v0 because the neighbor-
hood around a particle is completely randomized between
attempts of diffusive moves. As a result, increasing the
driving strength even more does not affect the relaxation
rate at high flow rates.
We now consider the interplay between temperature and

driving. So far, we have identified the thermal relaxation
rate, RT , for v= 0, and the driving relaxation rate, Rv,
for T = 0. For T > 0 and v > 0, the simplest assumptions
are that RT does not depend on v, Rv does not depend
on T , and the relaxation rates are additive, so that

τ(ρ, T, v) =
1

Rρ(ρ)+RT (ρ, T )+Rv(ρ, v)
. (5)

Figure 4 shows the ratio of the actual relaxation time
measured in simulations in which both T > 0 and v > 0
to this prediction. Obviously, when the values of RT and
Rv are very different, the smaller rate becomes irrelevant
and the larger behaves as it behaves in the complete
absence of the smaller. When RT and Rv are comparable,
deviations of around 20% are seen, indicating that the two
mechanisms are coupled and the relaxation is not given
as a simple sum of independent relaxations. For ρ < ρc,
these deviations disappear for small values of RT +Rv
since then the density mechanism dominates.

Dynamic heterogeneity. – Differences between the
relaxation mechanisms are clearly visible in spatial corre-
lations of the dynamics [22–25]. For a given ρ, T , and v,
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Fig. 4: (Color online) Ratio of the simulated relaxation time to
the prediction of eq. (5) vs. the ratio of temperature to driving
relaxation rates.

χ4(t) is maximal roughly when t= τ with a value related
to the typical number of particles that rearrange collec-
tively [2,26]. Figure 5 shows the maximal value of χ4 vs.
τ along different paths in the jamming phase diagram.
Solid circles denote the path of increasing density at T = 0
and v= 0. As expected, along this path, the typical size
of clusters rearranging collectively diverges as the system
jams [14]. The data behaves as max(χ4)∝ τλ with λ≈ 0.5,
in reasonable agreement with granular [2] and colloidal [3]
experiments.
When T decreases at fixed density, χ4 does not diverge

unless ρ= ρc. For ρ < ρc both the density and tempera-
ture relaxation mechanisms are at play. A blocked particle
can move by waiting until its neighbors move to unblock
it via the density mechanism. Additionally, temperature
assists relaxation not only by allowing a blocked particle
to overcome the kinetic constraint on its own, but also by
allowing the neighbors of this blocked particle to overcome
their kinetic constraints, thus releasing it and enabling it
to move by a unblocked move. Overall, the temperature
mechanism is less collective than the density mechanism.
This is shown by the result in fig. 5 that χ4 is smaller (left-
pointing triangles) at T > 0 than along the T = 0 path. As
T decreases, the contribution of the temperature mecha-
nism vanishes and the dynamics become dominated by the
density mechanism and therefore become more collective
with χ4 increasing until it meets the T = 0, v= 0 curve.
For ρ> ρc, relaxation occurs only via the temperature
mechanism. Such relaxation involves primarily a single
blocked particle that waits a long time until it manages
to move by a thermal move, and does not rely on the
correlated dynamics of many particles. Here, χ4 does not
grow at all with decreasing temperature at ρ > ρc (right-
pointing triangles), indicating that the typical spatial size
of each rearrangement does not increase as the dynamics
slow down.
Experimental data for many glass-forming liquids

shows that the scale of heterogeneities is also essentially
constant with decreasing temperature at sufficiently low
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Fig. 5: (Color online) Dynamic heterogeneity vs. relaxation
time along various paths to jamming, as indicated in the legend.

temperatures. There, an initial rise with τ in the number
of molecules whose dynamics on the scale of τ is correlated
to a local enthalpy fluctuation is followed by a very slight
increase or even saturation at large τ [4].
When driving is lowered at fixed ρ< ρc and T = 0 (open

squares in fig. 5), both the density and driving mechanisms
cause relaxation, and as for the thermal case, χ4 grows
until it meets the T = 0, v= 0 curve. Interestingly, since
the relative contribution of the density mechanism to the
overall relaxation is what determines the heterogeneity
along the T → 0 and v→ 0 paths, it does not matter
whether the non-collective rearrangement comes from
temperature or from driving, and the curves for these
two paths for ρ< ρc superimpose in fig. 5. For a path in
which driving is lowered at ρ > ρc and T = 0, the density
mechanism is frozen out and relaxation is due to driving
alone. As discussed earlier, the primary mechanism for
relaxation in that case is that a blocked particle eventually
becomes unblocked when its environment is changed by
flow. Like the temperature relaxation mechanism, this is
a local process that does not become collective as the
system jams. Figure 5 shows that χ4 is slightly larger
along the v→ 0 path than for the thermal case since more
particles are involved in each rearrangement event, but the
size of such events does not grow with increasing τ (open
diamonds), as for the temperature mechanism.
Finally, we consider a trajectory at ρ > ρc along which

both temperature and driving are positive (stars in fig. 5).
To maximize the interplay between the temperature and
driving mechanisms we select T and v such that RT =
Rv. Since in this case the two non-collective mechanisms
related to temperature and driving govern the relaxation
dynamics, the spatial extent of dynamic heterogeneity
saturates to a value which lies between that of the purely
thermal trajectory (solid triangles) and that of the purely
driven trajectory (open diamonds).

Conclusions. – We studied a kinetically constrained
lattice-gas with a non-trivial jamming phase diagram.
Our model is substantially simpler than currently used

particulate models with more realistic interactions, and is
easier to study numerically so that a wide range of time
scales (over ten decades) may easily be probed even in
relatively large systems.
Our model introduces three mechanisms by which

density fluctuations can relax, which we term the density,
temperature and driving mechanisms. In particulate
systems the same physical mechanisms come into play,
but they are intermingled in a more complicated way.
For example, real liquids, which are at high density,
behave as if they have a lower effective density at high
temperature. This is because increasing temperature in a
particulate system increases the ability to open up free
volume, and hence effectively decreases the density [27].
It also decreases the effective particle diameter, which
effectively decreases density [28]. Thus in real liquids,
one would expect the effective density to increase as
temperature decreases, thus slowing down relaxation due
to the density mechanism. Once the density mechanism
becomes too slow and is frozen out, the relaxation time
should be dominated by the temperature mechanism,
where small numbers of particles overcome energy barri-
ers via relatively uncorrelated rearrangements. Thus,
it seems reasonable to expect that the sharp crossover
from the density mechanism to the temperature one at
ρc in our model should be replaced in more realistic
systems by a gradual crossover from a density-dominated
regime at low densities or high temperatures, to a
temperature-dominated one at high density and low
enough temperature. More generally, at sufficiently high
densities and low temperatures or driving, the density
mechanism should eventually freeze out, leaving only the
temperature and driving mechanisms to relax the system.
In that regime, our results suggest that the spatial scale
of dynamic heterogeneities should be limited, as observed
in glass-forming liquids [4]. Recent analyses of other
lattice-based models find similar results [29,30].
One corollary of this result is that one might expect the

crossover from the density-mechanism–dominated regime
at high temperature to the temperature-mechanism–
dominated regime at low temperature to affect the form
of the dynamics. It is known for hard-sphere systems,
where only the density mechanism is at play, that the
increase of relaxation time with decreasing temperature
at fixed pressure is super-Arrhenius (fragile behav-
ior) [27]. On the other hand, the temperature mechanism
should give rise to Arrhenius behavior (strong behavior).
Thus, the crossover from a regime controlled by the
density mechanism to one controlled by the temperature
mechanism might be accompanied by a fragile-to-strong
crossover in the dynamics, although it is possible that one
crossover is more abrupt than the other.
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Note added in proofs: We recently became aware of [31]
which softens a kinetically constrained model, of [32]
which extends [4], and of [33,34] which study the fragile-
to-strong crossover in kinetically constrained models.
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F., L’Hôte D. and Tarjus G., Phys. Rev. E, 76 (2007)
041510.

[5] Durian D. J., Phys. Rev. Lett., 75 (1995) 4780.
[6] O’Hern C. S., Langer S. A., Liu A. J. and Nagel
S. R., Phys. Rev. Lett., 88 (2002) 075507.

[7] O’Hern C. S., Silbert L. E., Liu A. J. and Nagel
S. R., Phys. Rev. E, 68 (2003) 011306.

[8] Silbert L. E., Liu A. J. and Nagel S. R., Phys. Rev.
Lett., 95 (2005) 098301.

[9] Fredrickson G. H. and Andersen H. C., Phys. Rev.
Lett., 53 (1984) 1244.

[10] Kob W. and Andersen H. C., Phys. Rev. E, 48 (1993)
4364.

[11] Ritort F. and Sollich P., Adv. Phys., 52 (2003) 219.
[12] Toninelli C. and Biroli G., J. Stat. Phys., 130 (2008)

83.
[13] Biroli G. and Toninelli C., Eur. Phys. J. B., 64 (2008)

567.

[14] Toninelli C., Biroli G. and Fisher D. S., Phys. Rev.
Lett., 96 (2006) 035702.

[15] Jeng M. and Schwarz J. M., Phys. Rev. Lett., 98 (2007)
129601.

[16] Toninelli C., Biroli G. and Fisher D. S., Phys. Rev.
Lett., 98 (2007) 129602.

[17] Jeng M. and Schwarz J. M., J. Stat. Phys., 131 (2008)
575.

[18] Corberi F. and Cugliandolo L. F., J. Stat. Mech.,
(2009) P09015.

[19] Toninelli C. and Biroli G., J. Stat. Phys., 126 (2007)
731.

[20] Fielding S. M., Phys. Rev. E, 66 (2002) 016103.
[21] Sellitto M., Phys. Rev. Lett., 101 (2008) 048301.
[22] Glotzer S. C., J. Non-Cryst. Solids, 274 (2000)

342.
[23] Franz S., Mulet R. and Parisi G., Phys. Rev. E, 65

(2002) 021506.
[24] Dauchot O., Marty G. and Biroli G., Phys. Rev.

Lett., 95 (2005) 265701.
[25] Keys A. S., Abate A. R., Glotzer S. C. and Durian

D. J., Nat. Phys., 3 (2007) 260.
[26] Toninelli C. et al., Phys. Rev. E, 71 (2005) 041505.
[27] Xu N., Haxton T. K., Liu A. J. and Nagel S. R.,

Phys. Rev. Lett., 103 (2009) 245701.
[28] Berthier L. and Witten T. A., EPL, 86 (2009)

10001.
[29] Rotman Z. and Eisenberg E., unpublished.
[30] Harrowell P., unpublished.
[31] Elmatad Y. S., Jack R. L., Garrahan J. P. and

Chandler D., arXiv:1003.3161v1 (2010).
[32] Crauste-Thibierge C., Brun C., Ladieu F., L’Hôte
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