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Sherbrooke, Québec, Canada, J1K-2R1
2 Canadian Insitute for Advanced Research - Toronto, Ontario, Canada

received 16 January 2010; accepted in final form 6 April 2010
published online 6 May 2010

PACS 74.20.Mn – Nonconventional mechanisms
PACS 71.45.Lr – Charge-density-wave systems
PACS 74.70.Kn – Organic superconductors

Abstract – We use the weak-coupling renormalization group method to examine the interplay
between charge-density-wave and s-wave superconducting orders in a quasi–one-dimensional model
of electrons interacting with acoustic phonons. The relative stability of both types of order is
mapped out at arbitrary nesting deviations and Debye phonon frequency ωD. We single out a
power law increase of the superconducting Tc ∼ ω0.7D from a quantum critical point of charge-
density-wave order triggered by nesting alterations. The results capture the key features shown by
the proximity between the two types of ordering in the phase diagram of the recently discovered
Perylene-based organic superconductor under pressure. The impact of Coulomb interaction on
the relative stability of the competing phases is examined and discussed in connection with the
occurrence of s-wave superconductivity in low-dimensional charge-density-wave materials.

Copyright c© EPLA, 2010

Introduction. – The recent observation of supercon-
ductivity (SC) in the Perylene-based organic conduc-
tor Per2[Au(mnt)2] [1], brings once again into focus the
possible role played by a charge-density-wave (CDW)
instability in the mechanism of onset of SC in quasi–one-
dimensional (quasi-1D) electron systems. This work makes
use of the renormalization group (RG) technique to
analyze the interplay between these two phases in systems
of electrons coupled to lattice vibrations. Besides their
relevance for materials showing a CDW-SC proximity, the
results also address the issue of quantum criticality associ-
ated with interfering orders in models of electrons coupled
to bosonic excitations in low dimensions [2,3].
Per2[Au(mnt)2] is a member of the two-chain charge

transfer salts series Per2[M(mnt)2], where M=Pt, Pd,
Au, . . . . These organic salts are made of Perylene and
Dithiolate flat molecular complexes that pile up as
segregated stacks well described by a quasi-1D electronic
structure [4]. In normal pressure conditions, the Perylene
chains undergo a metal-insulator transition due to the
formation of a Peierls lattice-distorted state driven by
a CDW superstructure [5]. For the Per2[Au(mnt)2]
compound, only the Perylene stacks are electronically
active in the CDW transition, which takes place at

(a)E-mail: cbourbon@physique.usherbrooke.ca

TCDW � 12K at ambient pressure [6]. This is a relatively
low-temperature scale likely to be vulnerable to nesting
alterations of the Fermi surface by the application
of pressure. This is supported by the suppression of
the insulating state under 5 kbar of pressure, which
turns out to be also critical to the onset of SC at
Tc � 300mK [1], hinting at a direct part played by
CDW correlations in the enhancement of Cooper pairing.
The sequence of states thus obtained is reminiscent of
the competition between CDW and SC orders found
in some quasi-1D transition-metal trichalcogenides
materials [7]. The pattern is also akin to the quasi-1D
Bechgaard salts series [(TMTSF)2X], where a spin-
density-wave (SDW) state is known to be followed by
superconductivity under pressure [8–10]. In the latter
case the application of the RG method to electron
models with momentum-dependent repulsive interactions
has demonstrated how nesting deviations can control
the interference between density-wave and non–s-wave
Cooper pairings and reproduce the sequence of phases
displayed by the Bechgaard salts under pressure [11–13].
However, at variance with SDW systems where the

direct Coulomb term dominates the scene of interactions,
the electron-phonon coupling plays an essential role in
lattice-distorted CDW systems. Electron-electron interac-
tions induced by the exchange of acoustic phonons are
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Fig. 1: (Colour on-line) Phase diagram of the quasi-1D electron-
phonon model in the (t′⊥, ωD)-plane. Here T0 is the CDW
ordering temperature of the adiabatic ωD→ 0 and perfect
nesting t′⊥→ 0 limit.

dynamically governed by the Debye energy scale ωD,
which is much smaller than the Fermi energy and often
close to the energy scale of CDW order found in molecu-
lar conductors [8]. This introduces retardation in inter-
actions, which besides interchain hopping and nesting
alterations, modifies in a non-trivial way the interfering
many-body processes that are linked to density-wave and
Cooper pairings in every order of perturbation theory.
This difficulty has been well established in the past,
requiring to go beyond the habitual scheme of approx-
imations such as mean-field and RPA-like approaches
that are known to single out one pairing channel to the
detriment of the other [14–16]. In the one-dimensional
case, a weak-coupling solution to this problem has been
found in the framework of the RG method [17,18]. Recent
progress along these lines has shown that this approach
is well suited to simultaneously account for both pairing
processes in the determination of ground states in electron-
phonon systems at arbitrary phonon frequency.
In this paper the RG method is extended to a electron-

phonon model in the quasi-1D case and at finite temper-
ature. The temperature scales TCDW and Tc for the
instabilities of the metallic state against the formation of
CDW and SC orders are determined for arbitrary phonon
frequency ωD and nesting deviations parametrized by the
next-to-nearest-neighbor interchain hopping t′⊥. The main
results of the present work are outlined in the phase
diagram of fig. 1. For small t′⊥, TCDW weakens and under-
goes a quantum-classical crossover as ωD is raised and goes
beyond the adiabatic scale T0 for CDW ordering. When
nesting distortion attains some threshold t′⊥

∗, TCDW is crit-
ically reduced and at non-zero ωD, an SC instability takes
place in the s-wave channel only. In the adiabatic limit,
TCDW defines a quantum critical point at t

′
⊥
∗, from which

an anomalous power law increase of Tc with the phonon
frequency takes place. Along realistic pressure paths in
the (t′⊥, ωD)-plane, the model phase diagram follows the
leading features displayed by Per2[Au(mnt)2]. The impact

of the repulsive Coulomb interaction on the structure of
the phase diagram is explored alongside the predisposition
of electron-phonon driven CDW systems to show s-wave
superconductivity.

The model and the renormalization group equa-
tions. – We consider a non–half-filled two-dimensional
electron system consisting of N⊥ chains of length L with
the electron spectrum Ep(k) = vF (pk− kF )+ ε⊥(k⊥),
where ε⊥(k⊥) =−2t⊥cos k⊥− 2t′⊥cos 2k⊥. Here p=±
refers to right- and left-moving electrons along the stacks,
vF (kF ) to the parallel Fermi velocity (wave vector), and
t⊥ to the interchain hopping integral. In the quasi-1D
case, we have t⊥�EF = vF kF , where EF =E0/2 is
the Fermi energy taken as half the band width. The
next-to-nearest-neighbor transverse hopping t′⊥, which
describes nesting deviations, is kept small compared to
t⊥. The following calculations are carried out for the
typical values EF = 15t⊥ = 3000K. In the framework of
the Su-Schrieffer-Heeger (SSH) model [19], the electrons
are linearly coupled to parallel acoustic phonons. These
modes being harmonic, this is equivalent in the Matsub-
ara formalism of the partition function to consider a
frequency-dependent electron-electron interaction. In the
g-ology picture, the bare interaction reads

gi(k̄1, k̄2; k̄3, k̄4) =
gphi

1+ (ωn1 −ωn4)2/ω2D
, (1)

which for a non–half-filled band splits as a backward
(i= 1) and forward (i= 2) scattering amplitude between
p=+ and − moving carriers; here the momentum-
frequency variables k̄= (k⊥, ωn) satisfy the conservation
rule k̄3+ k̄4 = k̄1+ k̄2. For the SSH model the bare initial
amplitude (normalized by πvF ) for the 2kF backscattering

part gph1 is non-zero (g
ph
1 =−0.20 in the following), while

gph2 = 0 for the forward scattering at vanishing momentum
transfer [16].
To obtain the characteristic temperature scales for

ordering in the presence of t′⊥, the RG must be carried
out at finite temperature. The RG transformation of the
coupling constants results from the successive integration
of electronic degrees of freedom in the outer energy shell
±E0(�)d�/2 above and below the Fermi surface for all
Matsubara frequencies. Here E0(�) =E0e

−� is the scaled
bandwidth at the step �� 0 varying from zero to infinity at
finite T . In the momentum-frequency RG scheme adopted
here at finite temperature, each constant energy sheet
from the Fermi surface is divided into 12 patches, each
defining a particular k⊥ in momentum space, while a
discrete set of Nω = 14 fermion Matsubara frequencies
ωn (−7� n� 6) is retained along the frequency axis.
At finite temperature this represents a good compromise
between exacting computing time and reproducing the
results known for either the non-retarded case in quasi-
one dimension [12] or the electron-phonon problem in one
dimension [17].
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At the one-loop level, the backward and forward scat-
tering amplitudes obey the finite T flow equations

∂�g1(k̄1, k̄2, k̄3, k̄4) =
1

2π

∫
dk⊥IP (k⊥, q̄P )

× [εP 〈g1(k̄1, k̄, k̄P , k̄4)g1(k̄P , k̄2, k̄3, k̄)〉
+εP,v〈g2(k̄1, k̄, k̄4, k̄P )g1(k̄P , k̄2, k̄3, k̄)〉
+εP,v〈g1(k̄1, k̄, k̄P , k̄4)g2(k̄P , k̄2, k̄, k̄3)〉

]
+
1

2π

∫
dk⊥IC(k⊥, q̄C)

× [εC〈g1(k̄1, k̄2, k̄, k̄C)g2(k̄, k̄C , k̄4, k̄3)〉
+εC〈g2(k̄1, k̄2, k̄C , k̄)g1(k̄, k̄C , k̄3, k̄4)〉

]
(2)

and

∂�g2(k̄1, k̄2, k̄3, k̄4) =
1

2π

∫
dk⊥IP (k⊥, q̄′P )

×εP,l〈g2(k̄1, k̄, k̄3, k̄′P )g2(k̄′P , k̄2, k̄, k̄4)〉
+
1

2π

∫
dk⊥IC(k⊥, q̄C)

× [εC〈g1(k̄1, k̄2, k̄, k̄C)g1(k̄, k̄C , k̄4, k̄3)〉
+εC〈g2(k̄1, k̄2, k̄C , k̄)g2(k̄, k̄C , k̄3, k̄4)〉

]
. (3)

These consist of closed loop (εP =−2), vertex correc-
tions (εP,v = 1) and ladder (εP,l = 1) diagrams of the
2kF electron-hole (Peierls) pairing, which combine with
the ladder diagrams (εC =−1) of the electron-electron
(Cooper) pairing. Here k̄P = k̄+ q̄P , k̄

′
P = k̄+ q̄

′
P and

k̄C =−k̄+ q̄C , where q̄P,C = (q⊥P,C , ωP,C) corresponds
to the Peierls q̄P = k̄1− k̄4, q̄′P = k̄1− k̄3 and Cooper
q̄C = k̄2+ k̄1 variables. To significantly improve conver-
gence of each diagram at arbitrary finite temperature,
the frequency convolution

∑
ωn
gigjLC,P has been

decoupled as 〈gigj〉
∑
ωn
LC,P . In this simplified scheme,

〈· · ·〉=Nω−1
∑
n · · ·, stands as an average of the regular

variation of couplings over the internal loop frequency
variable, whereas the � derivative of the Cooper and
Peierls loops IP,C =

∑+∞
n=−∞ LP,C is evaluated exactly to

give

IP,C (k⊥, q̄P,C)=
∑
ν=±1

Θ[|E0(�)/2+νAP,C |−E0(�)/2]

×1
4

[
tanh

E0(�)+2νAP,C
4T

+tanh
E0(�)

4T

]

× (E0(�)+νAP,C)E0(�)
(E0(�)+νAP,C)2+ω2P,C

, (4)

where AP=−ε(k⊥)− ε(k⊥+ q⊥P ), AC=−ε(k⊥)+ ε(k⊥+
q⊥C), and Θ(x) is the step function (Θ(0)≡ 12 ) [12].
The RG equations are integrated from �= 0 to �→∞

and a singularity can occur in either the Peierls or the
Cooper scattering channel, which is indicative of an
instability of the metallic state towards long-range order
at the temperature Tµ. The nature of the ordering state
is provided by the singularity of the static and normal-
ized response function πvFχµ(q

0
µ) = (2π)

−1 ∫∫ dk⊥d�

Fig. 2: (Colour on-line) Typical low-temperature dependence
of the charge-density-wave (χCDW: squares) and s-wave super-
conducting (χSC: triangles) normalized susceptibilities in the
a) CDW and b) SC ordering sectors of fig. 4.

〈z2µ(k̄)〉IP,C(k⊥, q0⊥,µ) at the wave vector q0CDW = (2kF , π)
for µ=CDW and q0SC = 0 for µ=SC. The response
vertex parts zµ are governed by the equations

∂�zCDW(k̄+ q̄
0
P ) =

1

2π

∫
dk′⊥IP (k

′
⊥, q̄

0
P )zCDW(k̄

′+ q̄0P )

× 〈[εP g1(k̄′+ q̄0P , k̄, k̄+ q̄0P , k̄′)
+ εP,vg2(k̄

′+ q̄0P , k̄, k̄
′, k̄+ q̄0P )]

〉
, (5)

for the µ=CDW response (q̄0P = (π, 0)) and

∂�zSC(−k̄+ q̄0C) =
1

2π

∫
dk′⊥IC(k

′
⊥, q̄

0
C)zSC(−k̄′+ q̄0C)

× 〈εC [g1(−k̄′+ q̄0C , k̄′,−k̄+ q̄0C , k̄)
+ g2(−k̄′+ q̄0C , k̄′, k̄,−k̄+ q̄0C)]

〉
, (6)

for the static (s-wave) µ=SC response (q̄0C = 0). For the
whole range of parameters covered by the present model,
the finite temperature singularities only occur for either
the CDW or s-wave SC susceptibilities (fig. 2).

Results. – Let us first consider the instability of the
metallic state as one moves along the phonon frequency
axis at fixed t′⊥ (fig. 1). At perfect nesting t

′
⊥ = 0, the

adiabatic limit ωD→ 0 is characterized by a singularity
signaling the occurrence of a Peierls instability at the
temperature denoted T0 (� 20K for the parameters chosen
here). In this limit, only close loops contribute to the flow
of eqs. (2), (3) and (5), a limit equivalent to the molecular
field analysis of the Peierls instability of the metallic
state. By increasing ωD, both the vertex and ladder
diagrams are progressively unlocked and begin to mix and
interfere with closed loops. In the pertinent temperature
range T � t⊥ where all the instabilities take place, the
transverse electronic motion is coherent. As a function
of energy, the interference is then maximum in the one-
dimensional part of the flow where E0(�)/2> t⊥, whereas
for E0(�)/2< t⊥ interchain hopping begins to be coherent
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Fig. 3: (Colour on-line) (a) Normalized TCDW (square) and
s-wave Tc (triangle) vs. the phonon frequency ratio ωD/2T0
at different t′⊥/t⊥. (b) Normalized TCDW (square) and s-wave
Tc (triangle) vs. the nesting deviation parameter t

′
⊥/t⊥ for

different frequency ratios ωD/2T0.

and the interference becomes non-uniform in momentum
space and generates a k⊥-dependence of the coupling
constants [11,12]. As a result, TCDW diminishes with
increasing ωD. However, when the frequency reaches the
classical Peierls scale ω∗D(t′⊥ = 0)∼ 2T0, the decrease is
more rapid and TCDW undergoes a crossover toward a non-
adiabatic CDW regime where all diagrams of both pairing
channels contribute and ultimately level off the reduction
of TCDW (fig. 3(a)) —a crossover analogous to the one
found in the purely 1D case at t⊥ = 0 [16,17].
A finite amplitude of the antinesting term t′⊥ modifies

AP in (4), which reduces all the Peierls diagrams but
leaves those of the Cooper channel unchanged. Thus
TCDW first gets smaller (fig. 3(a)), then drops rapidly as
the phonon frequency extends across ω∗D, which is also
smaller, to finally attain the non-adiabatic limit (fig. 3(a)).
This reduction carries on until t′⊥ reaches in its turn
a critical value where ω∗D signals a crossover toward a
different instability of the metallic state where the Cooper
pairing processes are prevailing and the instability is
against s-wave SC at Tc. According to fig. 3(a), the SC
critical temperature increases with ωD and finally reaches
a plateau above ωD ∼ 2T0, a scale apparently still tied
to the adiabatic CDW limit. The s-wave Cooper pairing
attraction is taking place along the chains and is strongly

Fig. 4: (Colour on-line) Phonon frequency dependence of the
superconducting ordering temperature Tc at different t

′
⊥ < t

′
⊥
∗

and electron-phonon coupling gph1 . The dashed lines correspond
to the power law Tc ∼ ω0.7D .

enhanced by CDW fluctuations (fig. 1(b)). The Tc values
thus achieved are markedly enhanced with respect to the
BCS limit obtained when all the Peierls loops in (2), (3)
are put to zero.
When in the adiabatic limit, t′⊥ is further increased

up the critical value t′⊥
∗ ≈ 0.9T0, nesting alterations are

sufficiently large to suppress the singularity of the Peierls
channel, bringing TCDW down to zero (top curve, fig. 3(b)).
Since at ωD→ 0, all the ladder diagrams are vanishingly
small, the point t′⊥

∗ defines a quantum critical point for
CDW ordering. Moving now away from this point, along
the frequency axis, the SC instability shows up as a
result of the ladder diagrams of the Cooper channel
that progressively unfold. However, at variance with the
single channel BCS approximation, Tc follows a power law
increase Tc ∼ ωηD, with an exponent η� 0.70 smaller than
unity (fig. 4) —the BCS value η� 1 being recovered when
all the Peierls loops are turned off.
Being independent of t′⊥ > t

′
⊥
∗ and for a sizable range gph1

in weak coupling, the exponent η shows no noticeable trace
of non-universality (fig. 4). The non-BCS increase of Tc is
a direct consequence of the influence of CDW correlations
on Cooper pairing and which takes place at all energy
scales. As a matter of fact, when ωD increases, the Cooper
diagrams grow in importance on the one hand, but CDW
correlations and then the pairing interaction is reduced on
the other. It is the combination of both effects that leads
to an exponent η smaller than unity. This contrasts with
the BCS case where only the former effect is present, while
the coupling is considered essentially fixed and attractive
only below the sharp cutoff E0(�)/2 = ωD [20].
The “critical line” Tc ∼ ωηD corresponds to a quantum-

classical transition between the metallic and the SC states.
The Debye frequency can thus be put in the category of a
symmetry-breaking parameter that drives the transition
at a fixed electron-phonon coupling. In the standard
terminology [21], η is the crossover exponent φ= zν of

27001-p4
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the transition expressed in terms of the product of the
dynamical and coherence length exponents. Assuming
Lorentz invariance of the model, this forces z = 1, which
would imply an anomalous dimension for the coherence
length exponent, namely ν = η. Interestingly, if one looks
at the range of phonon frequency over which the power
law for Tc takes place, one realized that it is confined to
low frequency. According to figs. 3(a) and 4, Tc indeed
levels off when ωD exceeds the Peierls scale 2T0 for non-
adiabaticity, stressing once again the non-BCS character
of the transition.
To complete the analysis of the transition profile as a

function of nesting deviations, one observes from fig. 3(b)
that at finite ωD, the weakening of TCDW by ladder
diagrams and vertex corrections is correlated to a reduc-
tion of the threshold value t′⊥

∗ for the onset of superconduc-
tivity. The decrease of Tc with increasing t

′
⊥ > t

′
⊥
∗ is found

in fig. 3(b) to be relatively slow for any finite ωD. In effect,
t′⊥ is more effective as a low-energy scale to cut the CDW
singularity than to reduce CDW correlations responsible
of the major part of the attractive pairing (fig. 2(b)).
The above one-loop RG results for the present model

are summed up in the global phase diagram of fig. 1 for
arbitrary nesting deviations and phonon frequency.

Connection with experiments. – The above results
can apply to low-dimensional CDW systems where the
electron-phonon interaction is the prevalent mecha-
nism for ordering. This is distinctly possible in CDW
compounds like Per2[Au(mnt)2] for which the flat Pery-
lene molecular unit is rather large in size and polarizable.
The resulting Coulomb interaction is thus expected to
be small as corroborated by the weak enhancement of
the electron spin susceptibility and nuclear spin-lattice
relaxation rate reported for this material [22,23]. The
electron-phonon model considered above can then in a
first approximation be applied to the CDW-SC sequence
displayed by the compound under pressure. Taking into
consideration the pronounced quasi-1D anisotropy of this
material [4], the TCDW(� 12K [1,6]) observed in normal
pressure conditions can be considered not too far below
the optimal scale T0 calculated at perfect nesting. The ωD
of the 2kF acoustic phonons of the quarter-filled Perylene
stacks, though not known with accuracy, can be at least
be taken as few dozens of degrees. This fairly places
the compound with a frequency ratio ωD/2T0 > 1, and
according to fig. 1, with favorable conditions for supercon-
ductivity under pressure. As pressure scales up both band
parameters and phonon frequency1, the system is likely to
move from the CDW region (t′⊥ < t

′
⊥
∗, ωD/2T0 > 1) toward

SC where (t′⊥ � t′⊥∗, ωD/2T0 > 1) in the (t′⊥, ωD)-plane of
fig. 1, a path congruent with the results of Graf et al. [1].

1Strickly speaking pressure also reduces the initial backscattering

amplitude of |gph1 | ∝ κ−1, mainly through the hardening of the
phonon spring constant κ, an effect not included here and which
would lead to an additional but smooth reduction of both TCDW
and Tc under pressure.

Fig. 5: (Colour on-line) Variation of the transition temperature
(TCDW: squares; Tc: triangles) as a function of the antinesting
parameter t′⊥ for different Coulomb interaction amplitude
U/|gph1 |, normalized by |gph1 |, along U = 2V , and for ωD/2T0 =
1. The dashed line gives the reduction of the maximum Tc with
U . The circles (stars) refer to the SDW (d-wave SC) instability
emerging for U/|gph1 |� 1.

The pairing attraction of the model, albeit boosted by
CDW correlations, takes place along the chains and is
responsible for the s-wave character of superconductivity.
While a s-wave order parameter is well known to sustain
the presence of non-magnetic impurities; on the contrary,
it is sensitive to Coulomb interaction that is finite in prac-
tice and acts as a pair breaking effect. The impact the
Coulomb term has on the above results can be readily
examined by modifying the initial conditions of the flow
equations (2) and (3). In the framework of the extended
Hubbard model, this amounts to add the constant terms
g1 =U and g2 =U +2V to the backward and forward
scattering amplitudes at quarter-filling. Here U > 0 and
V > 0 are the on-site and first nearest-neighbor repul-
sive intra-chain interaction parameters of the extended-
Hubbard model, here normalized by πvF .
From the foregoing analysis and for suitable condi-

tions for superconductivity at ωD/2T0 ∼ 1, the one-loop
RG solution for the critical temperature along the line
U = 2V is given in fig. 5 as a function of the antinesting
parameter t′⊥. While weak intra-chain Coulomb interac-
tion reduces slightly TCDW (essentially due to the repul-
sive backscattering component g1), its detrimental impact
on superconductivity is particularly pronounced for rela-
tively weak repulsive interactions. The maximum Tc at t

′
⊥
∗

drops by an order of magnitude at U ∼ |gph1 |/5. However,
it is worth noticing that such a range of U is sufficient to
reduce the ratio Tc/TCDW|max to values comparable with
the one found experimentally in Per2[Au(mnt)2] [1] and in
the inorganic trichalcogenide compound NbSe3 [7].
By reinforcing repulsive interactions, Tc will therefore

not be very long to become vanishingly small and poten-
tially undetectable in practice, in spite of a sizable TCDW
at low pressure. This may supply some insight as to
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why quarter-filled molecular compounds like TMTSF-
DMTCNQ [24], known as a correlated CDW system [8,25],
failed to show any sign of superconductivity following the
suppression of its lattice-distorted state under pressure.
Such an interpretation may also adhere to the absence
of superconductivity in the phase diagram of correlated
quasi-1D compounds like [EDT-TTF-CONMe2]X [26],
and (DI-DCNQI)2X [27] at high pressure. From this angle,
the chance for a correlated organic metal like TTF-
TCNQ [8], whose CDW order is expected to vanish around
90 kbar [28], to show superconductivity is reduced at the
very least in the s-wave channel.
We finally examine in fig. 5 the impact of further

increasing the Coulomb term U on the phase diagram,
namely beyond the amplitude of the phonon induced
interaction. A qualitative change then occurs in the nature
and the sequence of ground states. The CDW gives way to
a SDW instability at low t′⊥, which in its turn yields non-
conventional d-wave superconductivity at t′⊥

∗ and above.
It is where the results of the present work connect to
the sequence of instabilities found in the purely repulsive
case [11–13], which is known to apply in systems like the
Bechgaard salts [8–10].

Conclusion. – In conclusion the instability of the
metallic state against charge-density-wave and s-wave
superconducting orders in quasi-1D systems can be
analyzed by extending the RG approach to electrons
coupled to phonons of arbitrary frequency. The results
show that both instabilities influence one another and
form a sequence of ordered states that captures the key
traits of low-dimensional charge-density-wave materials
exhibiting superconductivity under pressure.
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