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Abstract – The transition form factors of Ds→ f0�ν, D→ f0�ν and Bu→ f0�ν decays are
calculated within the 3-point QCD sum rule method, assuming that f0 is a quark-antiquark state
with a mixture of strange and light quarks. Having obtained the expressions of the transition form
factors, the branching ratios of these decays are calculated. The experimental measurement of the
branching ratios of these decays can provide a direct estimation of the mixing angle.
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Introduction. – The inner structure of the scalar
mesons in terms of quarks is still an open question in
particle physics and it is the subject of intense and
continuous theoretical and experimental investigations for
establishing their nature (for a review, see [1]). There
are numerous scenarios for the classification of the scalar
mesons. The established 0++ mesons are divided into two
groups: 1) near and above 1GeV, and 2) in the region
1.3GeV–1.5GeV. The first-group scalar mesons form an
SU(3) nonet, which contains two isosinglets, an isotriplet
and two strange isodoublets. In the quark model, the flavor
structure of these scalar mesons would be

σ= cos θ(n̄n)− sin θ(s̄s),
f0 = cos θ(s̄s)+ sin θ(n̄n),

a00 =
1√
2
(ūu− d̄d), a+0 = ud̄, a−0 = d̄u,

κ+ = s̄u, κ̄0 = d̄s, κ− = ūs, κ0 = s̄d,

where n̄n= (ūu+ d̄d)/
√
2, and θ is the mixing angle. Here

we take into account the fact that between isoscalars s̄s
and ūu+ d̄d there is mixing, which follows from experi-
ments. Indeed the observation

Γ(J/ψ→ f0ω)� 1
2
Γ(J/ψ→ f0φ)

indicates that the quark content of f0(980) (hereafter we
shall denote the f0(980) meson as f0) is not a pure s̄s state,
but should have non-strange parts too [2]. Secondly, if f0 is
a pure s̄s state, then there is no phase space for f0→KK0,
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(b)E-mail: savci@metu.edu.tr

and hence the OZI-suppressed f0→ ππ mode becomes
favorable. But the decay width of f0 is dominated by f0→
ππ which leads to the conclusion that in f0 there should
be n̄n parts as well. Therefore f0 should be a mixture of
s̄s and n̄n, as is presented in eq. (1). The analysis of the
experimental data shows that the mixing angle θ lies in
the range 25◦ < θ < 40◦ or 140◦ < θ < 165◦ [3].
Although there is another scenario where mesons below

or about 1GeV are described as a four-quark state (see
for example [4]), in this work we restrict ourselves to
considering the q̄q description for the f0 meson, but
taking into account the mixing between s̄s and n̄n. In
the present work we study the semileptonic decays B+→
f0�
+ν, D+d,s→ f0�

+ν in order to get information about the
quark content of f0.
From the theoretical point of view, the investigation

of the semileptonic decays is simpler compared to that
of hadronic decays, because leptons do not participate
in strong interactions. The experimental study of weak
semileptonic decays of heavy flavored mesons is very
important for the more accurate determination of the
Cabibbo-Kobayashi-Maskawa (CKM) matrix elements,
their leptonic decay constants, etc.
The precise determination of the CKM matrix elements

depends crucially on the possibility of controlling long-
distance interaction effects. So, in the study of the
exclusive semileptonic decays the main problem is the
calculation of the transition form factors, which involves
the long-distance QCD dynamics, belonging to the
non-perturbative sector of QCD. For this reason, in the
calculation of the transition form factors some kind of
non-perturbative approach is needed. Among all non-
perturbative approaches the QCD sum rules method [5]
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is more powerful, since it is based on the first principles
of QCD. About the most recent status of QCD sum rules,
the interested readers are advised to consult [6].
Semileptonic decaysD→K̄0eν̄e [7],D+→K(K0∗)e+νe [8],

D→ πeν̄e [9], D→ ρeν̄e [10], B→D(D∗)�ν̄� [11] and
D→ φ�ν̄� [12] are all studied in the framework of the
3-point QCD sum rules method. Recently, the
Bs→ f0�

+�− and Ds→ f0e
+νe decays are analysed

within the light cone QCD sum rules method in [13].
In this work we study the semileptonic Bu→ f0�

+ν�
and Ds(d)→ f0�

+ν� decays in the 3-point QCD sum
rules method. The paper is organized as follows: in the
second section, we derive the sum rules for the form
factors, responsible for the pseudoscalar to scalar meson
transition. The third section is devoted to the numerical
analysis of the transition form factors and discussion and
contains our conclusions.

Pseudoscalar-scalar meson transition form
factors from QCD sum rules. – For calculating the
pseudoscalar-scalar meson transition form factors in QCD
sum rules, the leptonic decay constant of scalar mesons
is needed. Obviously, the semileptonic decay rate should
depend critically on the coupling of resonances to the
quark current.
Remember that for the mixing scheme in the flavor

basis [14,15] σ and f0 states can be written as a combina-
tion of |n̄n〉= (ūu+ d̄d)/√2 and |s̄s〉 states as follows:

|σ〉= cos θq|n̄n〉− sin θs|s̄s〉,
|f0〉= sin θq|n̄n〉+cos θs|s̄s〉.

(1)

It is shown in [14] that in this scheme a single mixing
angle is required, since |θs− θq|/|θs+ θq| � 1, and this is
confirmed from QCD sum rules calculation [15]. For this
reason one can assume that θq = θs = θ. In QCD sum rules
we deal with interpolating currents, and for this reason we
choose the interpolating current of the scalar f0 meson in
the following form:

Jf0 = cos θs̄s+sin θ
1√
2
(ūu+ d̄d). (2)

The coupling constant of the f0 meson to the current (1)
can be parametrized as

〈0 |Jf0 | f0〉= λf0 . (3)

The coupling constant λf0 is calculated in [16], using
the two-point correlation function (the same correlation
function is studied in [17] for the case θ= 0, and it is
obtained that λf0 = 0.18± 0.015GeV), where the inter-
polating current for the f0 meson is taken in the form
as presented in eq. (2), and which predicts that λf0 =
(0.19± 0.02)GeV2. In further numerical calculations, we
will use this value of λf0 .
Having calculated the value of λf0 , our concern now

is to determine the pseudoscalar D(B)-scalar f0 tran-
sition form factors. Pseudoscalar-scalar transition form

factors are defined via the matrix element of the weak
current sandwiched between initial and final meson states
〈f0(p′) |q̄1γµ(1− γ5)q2|P (p)〉, where q1 and q2 are the rele-
vant quarks, P and f0 are the pseudoscalar and scalar f0
meson states, respectively. It follows from parity conserva-
tion in strong interactions that only the axial part of the
weak current gives non-zero contribution to this matrix
element, and imposing Lorentz invariance, it can be writ-
ten in terms of the form factors as follows:

〈f0(p′) |q̄1γµ(1− γ5)q2|P (p)〉=−iA[f+(p+ p′)µ+ f−qµ],
(4)

where qµ = p1− p2, f+(q2), f−(q2) are the transition form
factors, and

A=


cos θ for Ds→ f0,

sin θ√
2
for D→ f0, and Bu→ f0.

For the evaluation of these form factors in the QCD
sum rule, we consider the following 3-point correlation
function:

Πµ(p
2, p′2, q2) = −

∫
d4xd4y ei(p

′y−px)

× 〈0 ∣∣T {Jf0(y)JAµ (0)JP (x)}∣∣ 0〉, (5)
where JAµ = q̄2γµγ5q1 and JP = q̄1γ5q2 are the interpolat-
ing currents of scalar and pseudoscalar mesons, and weak
axial currents, and Jf0 is the interpolating current of the
f0 meson given in eq. (2), respectively. It should be noted
here that, q3 = u, q2 = u and q1 = b for the Bu→ f0 transi-
tion; and q3 = s(d), q2 = s(d) and q1 = c for the Ds(d)→ f0
transition, respectively.
The decomposition of the correlation function (4) into

the Lorentz structures, obviously, has the form

Πµ =Π+(p+ p
′)µ+Π−(p− p′)µ. (6)

For the amplitudes Π+ and Π−, we have the following
dispersion relation:

Π±(p2, p′2, Q2) = − 1

(2π)2

∫
ρ±(s, s′, Q2) dsds′

(s− p2)(s′− p′2)
+ subtraction terms, (7)

where ρ± is the corresponding spectral density and Q2 =
−q2 > 0. According to the QCD sum rules approach, the
correlation function is calculated by the operator product
expansion (OPE) at large Euclidean momenta p2 and p′2

on the one hand, and on the other hand it is calculated by
inserting a complete set of intermediate states having the
same quantum numbers with the currents Jf0 and JP .
The phenomenological part of (4) is obtained by satu-

rating correlator with the lowest pseudoscalar (in our case
Bu, Ds or D mesons) and scalar f0 mesons, yielding

Πµ =
〈0 |Jf0 | f0(p′)〉

〈
f0(p

′)
∣∣JAµ (0)∣∣P (p)〉 〈P (p) |JP (x)| 0〉

(m2f0 − p′2)(m2P − p2)
+ excited states. (8)

61001-p2



Semileptonic decays of pseudoscalar mesons to the scalar f0 meson

The matrix elements in eq. (8) are defined as

〈0 |Jf0 | f0(p′)〉 = λf0 ,

〈P |JP | 0〉 = −i m2P fP

m1+m2
, (9)

where λf0 and fP are the leptonic decay constants of
scalar and pseudoscalar mesons, andmf0 andmP are their
masses, respectively. Note that the leptonic decay constant
λf0 in eq. (9) is scale dependent for which we choose the
scale to be µ= 1GeV2, and

m1 =

{
mb, for Bu→ f0�ν,

mc, for Ds→ f0�ν, D→ f0�ν,

m2 =

{
mu, for Bu→ f0�ν, D→ f0�ν,

ms, for Ds→ f0�ν.

Using eqs. (4), (6), (8) and (9), for the invariant
structures we get

Π± =− fPm
2
P

m1+m2

Aλf0f±
(m2f0 − p′2)(m2P − p2)

. (10)

From the QCD side, the correlation function can be
calculated with the help of the OPE at short distance, and
in this work we will consider operators up to dimension
six. The theoretical part of the correlator for Bs→
Ds0(2317)�ν is calculated in [18], and in the present work,
for the theoretical part of the corresponding sum rules, we
will use the results of this work.
For the spectral densities we have

ρ+ =
ANc

4λ1/2(s, s′, Q2)
[(∆′+∆)(1+A+B)

+(m21+2m1m2+Q
2)(A+B)], (11)

ρ− =
ANc

4λ1/2(s, s′, Q2)
[(∆′+∆+m21+2m1m2+Q

2)

×(A−B)+∆′−∆− 2m1m2], (12)

where Nc = 3, ∆= s−m21, ∆′ = s′−m22, λ(s, s′, Q2) =
(s+ s′+Q2)2− 4 ss′, and

A=
1

λ(s, s′, Q2)
[−(s+ s′+Q2)∆′+2 s′∆],

B =
1

λ(s, s′, Q2)
[−(s+ s′+Q2)∆+2 s∆′].

For the decays under consideration, m2 is mu(md) or
ms, and therefore, to take into account SU(3)-violating
effects, here and in all following calculations, we will retain
terms that are linear withm2, and neglect the terms higher
order in m2.

For power corrections (PC) we get

see eq. (13) on the next page

see eq. (14) on the next page

where r= p2−m21 and r′ = p′2. Note that theDs→ f0�
+ν�

and D→ f0�
+ν� decays which are considered in [16] differ

from our results in three aspects:

– Our result on the spectral density is two times smaller
compared to that given in [16]. Since it is known that
the main contribution to the sum rules comes from the
spectral density, it is indispensable that our results on
the form factors differ from those predicted in [16].

– In [16], part of those diagrams which are proportional
to ms are not taken into account (in our case they
correspond to the terms proportional tom2m

2
0〈q̄2q2〉).

– Sum rules for the form factor f− are totally absent
in [16], which could be essential for the Bu→ f0τντ
decay.

Contributions of higher states in the physical part of
the sum rules are taken into account with the help of the
hadron-quark duality, i.e., corresponding spectral density
for higher states is equal to the perturbative spectral
density for s0 and s′0 starting from s > s0 and s′ > s′0,
where s and s′ are the continuum thresholds in the
corresponding channels.
Equating the two representations for the invariant struc-

tures Π±, and applying the double Borel transformation
on the variables p2 and p′2 (p2→M2, p′2→M ′2) in order
to suppress the higher states and continuum contributions,
we get the following sum rules for the form factors f+
and f−:

λf0f±(q
2)e−m

2
f0
/M2

=−m1+m2
fPm

2
P

em
2
P /M

2

×
{∫
dsds′ρ′±(s, s

′, Q2)e−s/M
2−s′/M ′2

+BM2BM ′2Π′PC±

}
,

(15)

where the prime on ρ± and ΠPC± refers to eqs. (11)–(14)
without the multiplying factor A. The double Borel
transformation for the quantity 1/rnr′m is defined as

BM2BM ′2
1

rnr′m
= (−1)n+m

(
M2
)n−1
Γ(n)

(
M ′2)m−1
Γ(m)

× e−m21/M2

e−m
2
2/M

′2
. (16)

The integration region for the perturbative contribution
is determined from the following inequalities:

−1� 2ss
′+(m21− s)(s+ s′+Q2)
λ1/2(s, s′, Q2)(m21− s)

� 1. (17)
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ΠPC+ = A
{
1

2
〈q̄2q2〉m1−m2

rr′
+
1

4
m2〈q̄2q2〉

(
m21
r2r′
− 2
rr′

)
− 1
12
m20〈q̄2q2〉

×
[
3m21(m1−m2)

r3r′
+
2(m1− 2m2)

rr′2
+
2(2m1−m2)

r2r′
+
m1(2m

2
1+m1m2+2Q

2)− 2m2(m21+Q2)
r2r′2

]

+
4

81
παs〈q̄2q2〉2

[
−12m

3
1(m1−m2)
r4r′

+
8m1m2(m

2
1+Q

2)

r2r′3
+
56m1m2
rr′3

−4m
2
1(2m

2
1+m1m2+2Q

2)− 8m1m2(m21+Q2)
r3r′2

− 8m1(8m1− 7m2)
r3r′

+
48

rr′2
+
48

r2r′
− 4(5m

2
1− 20m1m2− 2Q2)

r2r′2

]

+
1

9
m20m2〈q̄2q2〉2

[
−m

2
1(m

2
1+Q

2)

r3r′2
+
5m21+4Q

2

r2r′2
+
6m41
r4r′

+
10m21
r3r′

]}
, (13)

ΠPC− = A
{
−1
2
〈q̄2q2〉m1+m2

rr′
+
1

4
m1m2〈q̄2q2〉

(
− m1

r2r′
)
+
1

12
m20〈q̄2q2〉

×
[
3m21(m1+m2)

r3r′
+
2(m1+3m2)

rr′2
+
2(3m1+m2)

r2r′
+
m1(2m

2
1+m1m2+2Q

2)+ 2m2(m
2
1+Q

2)

r2r′2

]

+
1

81
παs〈q̄2q2〉2

[
12m31(m1+m2)

r4r′
− 8m1m2(m

2
1+Q

2)

r2r′3
− 56m1m2

rr′3

+
4m21(2m

2
1+m1m2+2Q

2)+ 8m1m2(m
2
1+Q

2)

r3r′2
+
8m1(9m1+7m2)

r3r′
+
28m21
r2r′2

+
8

rr′2
− 8

r2r′

]

+
1

9
m20m2〈q̄2q2〉2

[
m21(m

2
1+Q

2)

r3r′2
− m21
r2r′2

− 6m
4
1

r4r′
+
4

rr′2
− 4

r2r′
− 24m

2
1

r3r′

]}
, (14)

Numerical analysis. – In this section we present
our results for the form factors f+(q

2) and f−(q2)
for the decays under consideration. The main input
parameters for the sum rules are the Borel para-
meters M2 and M ′2 and the continuum thresholds
s0 and s

′
0. The values of other parameters needed are:

mb = (4.7± 0.1)GeV [6], mc = 1.4GeV, 〈ūu〉|µ=1GeV =
−(1.65± 0.15)×10−2GeV3, 〈s̄s〉= 0.8×〈ūu〉 [19], ms(µ=
2GeV)= (102± 8)MeV for Λ= 381± 16MeV [20]. The
values of the leptonic decay constants of Bu, Ds and D
mesons are determined from the analysis of the correspond-
ing two-point correlators: fBu = (0.14± 0.01)GeV [21],
fDs = (0.22± 0.02)GeV [22] and fD = (0.17± 0.02)GeV
[6,20,22]. For the continuum thresholds we take the
values sBu0 = (33± 2)GeV2, sDs0 = (7.7± 1.1)GeV2,
sD0 = (6± 0.2)GeV2 and s′0 = 1.6± 0.1)GeV2 which is
determined from 2-point sum rules analysis [6,14,23].
Using more recent experimental data, the following values
for the leptonic decay constants fD, fDs and fB are
obtained in [24]:

fDs = (0.257± 0.061)MeV,

fD = (0.207± 0.009)MeV,

fB = (0.193± 0.011)MeV. (18)

The Borel parameters M2 and M ′2 are the auxiliary
parameters and therefore the physical quantities should
be independent of them. For this reason we need to find
the working regions ofM2 andM ′2 where form factors are
practically independent of them.
In obtaining the working regions of M2 and M ′2 the

following two conditions should be satisfied:

– the continuum contribution should be small, and,

– power corrections should be convergent.

Our numerical analysis shows that both conditions
are satisfied in the region 10GeV2 �M2 � 20GeV2 for
Bu→ f0�ν̄�, 4GeV

2 �M2 � 8GeV2 for Ds(D)→ f0�ν̄�,
and 1.2GeV2 �M ′2 � 2GeV2 for all channels.
Varying the input parameters s0, s

′
0, f0, fDs , fB and

fD in the respective regions as mentioned in the text, we
get the following results for the form factors at q2 = 0:

fBu+ (0) = 0.59± 0.18 (0.42± 0.13),
fBu− (0) =−0.58± 0.18 (−0.41± 0.13),
fD+ (0) = 0.68± 0.23 (0.57± 0.19),
fDs+ (0) = 0.48± 0.23 (0.28± 0.14), (19)

where the errors come from the uncertainties in the
variation of the Borel parameters M2 and M ′2 and

61001-p4
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dΓ

dq2
=

1

192π3m3P
G2 |Vij |2 λ1/2(m2P ,m2f0 , q2)

(
q2−m2�
q2

)2

×
{
− (2q

2+m2�)

2

[∣∣f+(q2)∣∣2 (2m2P +2m2f0 − q2)+ 2(m2P −m2f0)Re [f+(q2)f∗−(q2)]+ ∣∣f−(q2)∣∣2 q2]

+
(q2+2m2�)

q2

[∣∣f+(q2)∣∣2 (m2P −m2f0)2+2(m2P −m2f0)q2Re [f+(q2)f∗−(q2)]+ ∣∣f−(q2)∣∣2 q4]
}
|A|2 , (21)

Table 1: Form factors for the Ds→ f0�ν̄�, D→ f0�ν̄� and
Bu→ f0�ν̄� decays in a four-parameter fit.

f+(0) f−(0) a b c d
Ds 0.48 0.81 −0.18 0.19 0.86
D 0.68 0.82 −0.40 0.21 −1.00
Bu 0.59 0.51 −0.21 −0.47 −0.95
Bu −0.58 0.46 −0.30 −0.84 −1.36

continuum thresholds s0 and s′0, as well as from the
uncertainties in the determination of the input parameters
entering into the sum rules. Note that we present the
form factor f− only for the Bu→ f0τ ν̄τ decay, because
this form factor can give considerable contribution to this
decay, because using the Dirac equation one can see that
f− is multiplied to the lepton mass. The values of the
form factors presented in the paranthesis are obtained by
using the values of the leptonic decay constants presented
in eq. (18).
In estimating the width of P → f0�ν̄� decay, we need to

know the q2-dependence of the form factors f+(q
2) and

f−(q2) in the whole kinematical region m2� � q2 � (mP −
mf0)

2. The q2-dependence of the form factors can be
calculated from QCD sum rules (see [8,9]). Unfortunately
QCD sum rules cannot reliably predict the q2-dependence
of the form factors in the full kinematical region. The QCD
sum rules can reliably predict the q2-dependence of the
form factors in the region approximately 1GeV2 below
the perturbative cut. In order to extend the dependence
of the form factors on q2 to the full kinematical region, we
look for such a parametrization of the form factors where
they coincide with the sum rules prediction in the above-
mentioned region. Our numerical calculations shows that
the best parametrization of the form factors with respect
to q2 is as follows:

fP± (q
2) =

fP± (0)
1− aP q̂+ bP q̂2− cP q̂3+ dP q̂4

, (20)

where P =Bu,Ds,D and q̂= q
2/m2P . The values of the

parameters fP (0), aP , bP , cP and dP are given in table 1,
where the central values of the parameters in eq. (19) are
presented.
Using the parametrization of eq. (3), for the P → f0�ν̄�

differential decay width, we get

see eq. (21) above

where

Vij =



|Vub|= (3.96± 0.36)× 10−3, for Bu→ f0�ν̄�,

|Vcs|= 1.04± 0.06, for Ds→ f0�ν̄�,

|Vcd|= 0.23± 0.011, for D→ f0�ν̄�.

[2]

Taking into account the q2-dependence of the form
factors f+ and f−, performing integration over q2 and
using the lifetimes of Bu, Ds and D mesons, we get the
following values for the branching ratios:

B(Bu→ f0τ ν̄τ ) = [(1.26± 0.5)× 10−4] sin2 θ/2,
B(Bu→ f0µν̄µ) = [(3.63± 1.4)× 10−4] sin2 θ/2,
B(Bu→ f0eν̄e) = [(3.64± 1.4)× 10−4] sin2 θ/2,
B(Ds→ f0µν̄µ) = [(4.42± 2.0)× 10−3] cos2 θ,
B(Ds→ f0eν̄e) = [(4.69± 2.2)× 10−3] cos2 θ,
B(D→ f0µν̄µ) = [(6.87± 2.8)× 10−4] sin2 θ/2,
B(D→ f0eν̄e) = [(7.30± 3.1)× 10−4] sin2 θ/2. (22)

The predictions for the branching ratio in eq. (22) are
the main results of this work and they are independent of
any mixing scheme. If we use the mixing scheme in the
flavor basis, we see that the branching ratios

R1 =
B(D→ f0�ν̄�)

B(Ds→ f0�ν̄�)
, (23)

R2 =
B(Bu→ f0�ν̄�)

B(Ds→ f0�ν̄�)
, (24)

are directly related to the mixing angle θ.
On the other hand, as far as the flavor structure of f0,

as given in eq. (11), is concerned the ratio

R3 =
B(Bu→ f0�ν̄�)

B(D→ f0�ν̄�)
, (25)

is independent of the mixing angle θ. Therefore, the
experimental measurement of the branching ratios of
Bu→ f0�ν̄�, Ds→ f0�ν̄� and D→ f0�ν̄� decays can give
direct information about the mixing angle θ, as well as,
about the flavor structure of the f0 meson.
It should be remarked here that, the first experimental

result on the semileptonic Ds→ f0�ν decay is already
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announced by the CLEO Collaboration [25]. Using our
result on the Ds→ f0�ν decay and comparing it with the
measured value of the branching ratio [25], the mixing
angle is estimated to have the value cos2 θ= 0.98+0.02−0.21.
Further improvements on the planned experiments, as well
as on the theoretical studies, can give valuable information
about the mixing angle θ.
In conclusion, we study the semileptonic decay of

pseudoscalar mesons to the scalar f0 meson. The transition
form factors are calculated using the 3-point QCD sum
rule analysis and then we estimate the corresponding
branching ratios. Experimental data about the branching
ratios of semileptonic decays Bu→ f0�ν̄�, Ds→ f0�ν̄� and
D→ f0�ν̄� would provide a direct estimation of the mixing
angle θ.
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