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Abstract – A BCS (Bardeen-Cooper-Schrieffer) superconductor, which is placed out of equilib-
rium, can develop quantum instabilities, which manifest themselves in oscillations of the super-
conductor’s order parameter (pairing amplitude ∆). These instabilities are manifestations of the
Cooper instability. Inelastic collisions are essential in resolving those instabilities. Incorporating
the quantum instabilities and collisions in a unified approach based on Richardson’s exact solution
of the pairing Hamiltonian, we find that a BCS superconductor may end up in a state in which
the spectrum has more than one gap.

Copyright c© EPLA, 2010

Introduction. – An equilibrium BCS superconductor
has the property that the spectral gap is located around
the Fermi energy. When the superconductor is connected
to leads thorough a tunnel junction and current is allowed
to pass through the system, the superconducting gap
may be found below or above the Fermi energy. Since
excitations above the gap are electron-like and those below
the gap are hole-like, the shift of the gap away from
the Fermi energy is accompanied by a net difference,
∆N , between the number of hole-like and electron-like
excitations. A quantity “branch imbalance” with the
dimension of energy is denoted by Φ and defined by
Φ≡ ∆N

ρ0
, where ρ0 is the density of states.

Experiments [1,2] have directly demonstrated the
difference between the Fermi energy and the energy of
the gap (or the condensate energy) in the same piece of
superconducting material. In order to understand how
the injection of excitations through a tunnel junction into
a superconductor can lead to imbalance, consider first
that the current is injected into the superconductor as
normal current while in the superconductor it flows as
supercurrent. This means that a process by which normal
excitations are converted into condensed pairs must take
place in the injection region. The condensed pairs then
flow away from the injection region as supercurrent.
The processes responsible for converting normal exci-

tations into condensed pairs are collisions, in many case
predominately electron-phonon collisions. These collisions
constantly convert electron-like excitations into condensed
pairs or destroy condensed pairs by converting hole-like

(a)E-mail: eldadb@phys.huji.ac.il

excitations. The energy of the condensate, and conse-
quently of the condensed pairs, can be assigned as the
energy of the gap (the gap midpoint). If the gap resides
at the Fermi energy, particle-hole symmetry leads to equal
rates for condensed-pair creation and annihilation, i.e. to
no net conversion of quasi-particles into condensed pairs.
It is the shift of the gap relative to the Fermi surface
that allows for a net conversion of quasi-particles into
condensed pairs.
Close to the critical temperature and under certain

assumptions, to be detailed below, one can write down
an approximate distribution function for the excitations
describing a situation where the quasi-particles are at equi-
librium at chemical potential ξ1−Φ, while the condensate
is at energy ξ1 [3–5]:

n(ξ) =
1

1+ e
ε(ξ)+Φq(ξ)

kT

, (1)

where ε(ξ) and q(ξ) are the energy and charge of an
excitation, respectively:

ε(ξ) =
√
(ξ− ξ1)2+∆21, q(ξ) =

ξ− ξ1
ε(ξ)

. (2)

∆1 denotes the size of the gap. Quasi-neutrality demands
Φ= ξ1.
Equation (1) is only an approximation and has correc-

tions, but for a qualitative understanding of the effect we
want to describe, it shall be sufficient to ignore these for
the time being. We follow here closely the treatment of [4].
If one plugs (1) into the self-consistency equation, one
obtains a relation between ∆1 and Φ, as follows:

∆21 =∆1(0)
2− 2Φ2, (3)
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Fig. 1: (Colour on-line) Dependence of gap, ∆1, on imbalance,
Φ, in units of the gap in the absence of imbalance, ∆1(0).
Beyond the critical value of the imbalance, Φ∗, the systems
is not stable for Cooper pairing at the Fermi energy.

where ∆1(0) is the gap at Φ= 0. It is seen that branch
imbalance, as measured by Φ, suppresses the gap
(see fig. 1). In fact at Φ=∆(0)/

√
2, the gap is completely

suppressed, and all pairing correlations vanish. The
system returns back to the normal-metal state. It is
known, however, that this state is unstable. Any normal
metal placed below Tc is unstable to Cooper pairing,
i.e. to formation of pairing correlation at the Fermi
energy. There must be a critical value of Φ, designated as
Φ∗, above which, the system becomes unstable to such
pairing, as pointed out in [4].
The scenario associated with the instability can be

described roughly as follows: pairing correlations are
restricted to a region of size comparable to the gap, ∆1 at
the gap energy, ξ1. As ξ1 =Φ becomes larger, this region
becomes smaller because of suppression. As a consequence
the Fermi energy remains devoid of pairing correlations.
The Cooper instability —an instability to the formation
of correlations at the Fermi energy— then takes place.
The purpose of this letter is to analyze the state which

is formed beyond the instability point. We shall show, that
a novel state appears where another gap, ∆2, is formed at
an energy ξ2 closer to the Fermi level. We shall make use
of Richardson’s exact solution of the pairing Hamiltonian,
to describe such a state. Other approaches are known to
be inadequate to describe the state beyond the instability
point [6,7].

Semiclassical approach for instability. – To better
understand the instability that takes place, it is useful to
consider the behavior of Anderson’s pseudo-spins [8]:

szj =
1

2

(〈∑
σ

c†j,σcj,σ

〉
− 1
)
, s+j ≡ sxj − isyj = 〈c†j,↓c†j,↑〉,

which afford a semiclassical description. The order para-
meter ∆ is given by ∆≡∆x− i∆y ≡ g2

∑
js
+
j , and is a

measure of the overall pairing correlations. The semiclas-
sical limit of the dynamics may be obtained by recasting
the pairing Hamiltonian as follows:

H =
∑
j,σ

ξjc
†
j,σcj,σ − g

∑
j,j′
c†j↑c

†
j↓cj′↓cj′↑, (4)

through the pseudo-spins, H =
∑2M
j=1 2ξjs

j
z − 2g |∆|2. This

leads to the following equations of motion for the pseudo-
spins:

�̇sj =−2 (∆x,∆y,−ξj)×�sj . (5)

A solution of (5), where the order parameter takes the
form ∆=∆1e

2iξt. Namely, the order parameter has a
time-independent modulus, which equals the supercon-
ducting gap, ∆1. This solution is provided by taking

�s(ξ) =
n(ξ)

ε(ξ)
(Re(∆), Im(∆), ξ1− ξ) , (6)

for ∆1 satisfying the self-consistency condition:

2

g
=
∑
ξ

n(ξ)

ε(ξ)
. (7)

Here ε(ξ) is given by (2), and n(ξ) may be interpreted as
the distribution function for the excitations.
The distribution function given by (1) represents just

such a solution (with time-independent modulus of the
order parameter). The solution (6) becomes unstable for
Φ>Φ∗. The instability manifests itself in a linear stability
analysis around the solution (6). The unstable modes can
be seen to represent pairing correlations forming at the
Fermi energy. Namely such a mode contains non-vanishing
components of s+(ξ) at energies around the Fermi energy.
A perturbation around the time-independent solution will
excite these modes. The pairing correlations around the
Fermi surface then manifest themselves in a change of the
order parameter ∆. Moreover the modulus of the order
parameter will cease to be time independent.
If instead of (1) one takes the distribution function

of the normal metal (obtained by taking ∆1 = 0, ξ1 =
Φ= 0) one recovers the usual Cooper instability. Such
an instability arises if one takes a normal metal and
suddenly switches on the pairing interaction. This can be
potentially realized in the lab by employing the Feshbach
resonance [9,10]. Such a situation was considered in [11].
It was shown there that the time dependence of the
order parameter exhibits an oscillatory behavior which
can be described as soliton trains (see fig. 2). It should be
noted that this behavior is only exhibited at times before
collisions take place. Collisions will tend to equilibrate
the system bringing it to the BCS state, with its time-
independent order parameter. To treat collisions one must
go beyond (5), however in the simple Cooper instability
problem one already has a good qualitative understanding
of the system’s behavior: first soliton trains will ensue, the
oscillations associated with the soliton trains will slowly
die out and the thermal equilibrium state, where the order
parameter is constant in time, will be reached.
An important development in the study of the semi-

classical equations is the discovery of their integrability.
This was achieved in [12] and then utilized in [13]. An
interesting Wigner function formalism for the collisionless
dynamics has appeared in [14].
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Fig. 2: (Colour on-line) A sketch of the time dependence of
the modulus of the order parameter as a function of time,
the typical Richardson spectrum is shown for each period.
After an initial quiet period (left Richardson spectrum), a
perturbation causes a train of solitons to appear (middle
Richardson spectrum), these oscillations slowly die out and the
global steady state ensues (right Richardson spectrum). In the
Richardson spectrum plots, × denote instability points, while
arcs are shown in contoured heavy lines.

In the case at hand, where the Cooper instability takes
place at the same time that a gap already exists away
from the Fermi surface, a qualitative understanding of
the steady state is more complicated. The semiclassical
analysis just after the instability takes place was studied
in [15]. However, without employing some new theory, no
obvious candidate for the long-time steady state beyond
the instability point exists. Indeed eq. (1) does not provide
such a solution for any value of Φ and ∆1. The purpose
of the letter is to characterize this state. In particular we
will find that two gaps coexist in the spectrum.

Quantitative analysis of imbalance. – We shall
treat the problem using a kinetic approach. In order for a
kinetic approach to be valid, the time, τ∆ =

�

∆ , it takes for
the spectrum to adjust to changes of the order parameter
must be much smaller than the collision time τε. We
assume a situation such as the one displayed in fig. 3.
We treat the superconductor S in the tunnel region. We
shall later see that beyond the instability point two gaps
appear in S as depicted in the figure. For simplicity SA
may be regarded as being in equilibrium.
In addition, we shall need the assumption of local equi-

librium, namely that the system thermalizes on a much
faster time scale than it is forced out of equilibrium. The
non-equilibrium forcing is associated with the injection
of imbalance into the sample. The injection process is
balanced out in steady state by processes that relax imbal-
ance, which involve excitations scattering to a region close
to the gap. We shall assume throughout that |T −Tc| �
Tc. In this regime ∆� Tc and only a fraction ∆T of the
processes involve excitations near the gap. This results in a
typical branch imbalance relaxation rate which is given by
τ−1Q = τ

−1
ε
∆
T
, satisfying τQ� τε. Local equilibrium estab-

lishes on a time scale τε if the non-equilibrium forcing is
small enough such that it operates on a time scale τQ along
with imbalance relaxation processes.

Fig. 3: Two superconductors S and SA with Fermi energies EF
and EF,A, are coupled through a tunnel junction. S develops
two gaps ∆1 and ∆2, at energies ξ1 and ξ2, respectively. SA
has gap ∆A.

When these conditions are satisfied, namely when τ∆�
τε� τQ, one may use the following distribution function,
n, for the occupation number of excitations, written here
through the linear combination ρ= 2n− 1 for convenience:

ρ(ξ)≡ 2n− 1 = tanh
(
ε(ξ)+Φq(ξ)

2Tc

)
+ δρ, (8)

where ε(ξ) =
√
(ξ− ξ1)2+∆2, is the BCS spectrum of

excitations and q(ξ) = ξ−ξ1
ε(ξ) , is the charge of an excitation,

and δρ is the next to leading order correction in ∆
T
. The

distribution function (8) describes a situation where the
condensate is at chemical potential ξ1, while the quasi-
particles have a chemical potential −Φ above it. The
possibility to sustain the two entities at different potentials
exists due to the fact that on the thermalization time scale
τε, transitions from the condensate to the quasi-particle
population are suppressed, since the latter only happen
on a time scale τQ.
Quasi-neutrality dictates ξ1 =Φ. To find the relation

between ξ1 and ∆ one may use the self-consistency condi-
tion,

∫
ρ
ε
dξ = 2

g
, for g the interaction coupling constant

(see (4). This gives [3,4]

∆2+2Φ2+T 2c

∫
δρ

ε
dξ = cTcδT, (9)

where c= 8π2

7ζ(3) , and δT = Tc−T . This is a corrected
version of (3). The charge imbalance Φ may be given an
order of magnitude estimate by balancing the injection
rate to the relaxation rate of imbalance, τ−1Q . This is given
by Φ= b

2
√
2
IτεT

2
c∆

−1, for some constant b of order unity.
Here I is the injection intensity, namely, the inverse time
it takes for an excitation to enter the superconductor. The
contribution of the integral in (9) can also be estimated
based on a expansion of the kinetic equation by order
of ∆

T
[4,7]. The result is aT 2c Iτε, for some constant a

of order unity. This constant may be either positive or
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negative depending on whether the injection process tends
to suppress or enhance [2] superconductivity, respectively.
We shall assume a situation where a is negative [4], namely
enhancement1.
Putting the above estimates into (9), one obtains a

relation between the gap ∆ and the injection rate:

2∆2 =∆2p±
√
∆4p− (bĨ)2, ∆2p = cTcδT − aĨ, (10)

where Ĩ = IT 2c τε. For a given Ĩ there exist two different
∆ corresponding to the + and − signs in (10). Using a
stability analysis of the semiclassical equations (5) it was
shown in [4] that the superconductor becomes unstable to

Cooper pairing for ∆<
∆2p
Tc
, this occurs when the injection

rate is above some critical value, and only for the solutions
in (10) corresponding to the minus sign. It was also shown
in [4] that beyond this point the order parameter starts
oscillating on the time scale τ∆. This invalidates the
distribution function (8) along with the kinetic approach
based on the BCS expressions for the spectrum ε(ξ) and
excitation charge q(ξ). The BCS approach is no longer
valid as it is based on the assumption that the order
parameter is time independent on a time scale τ∆. We shall
argue in the sequel that (8) is in fact valid, albeit with a
new spectrum of excitations, consisting of two gaps, and a
suitable q(ξ), both computed making use of Richardson’s
exact solution of the problem.

Richardson’s solution. – Richardson [16] had solved
exactly the pairing Hamiltonian (4). The first stage for
solving the Hamiltonian is to note that singly occupied
levels do not participate in the dynamics and are blocked
to the pairs. One may simply drop the singly occupied
levels from the spectrum and solve (4) for the case where
levels are either occupied or unoccupied with pairs.
We take the Hamiltonian (4), where j runs over 2M

levels around the Fermi energy. Suppose that there are
N +2M particles in the system and L levels are blocked.
Richardson’s solution for the eigenstates for the reduced
spectrum is the following:

N+2M−L
2∏
α=1

b†α|0〉, b†α =
∑
i

1

Eα− ξi c
†
i,↑c

†
i,↓, (11)

where the E’s are complex parameters which must satisfy
the following non-linear equations:

2

g
=−
∑
j

1

Eν − εj +
∑
µ�=ν

2

Eν −Eµ , (12)

which can be viewed as the condition of vanishing electric
field (equilibrium) for each of the charges Eν , in two-
dimensions. Each E carries a charge +1, while at each
location of ξi a charge − 12 is present. In addition, there
1Enhancement only serves to provide a situation where steady

state is possible beyond the stability point. In the opposite case a> 0
an instability of the kinetic negates such a steady-state solution [4].
This instability is unrelated to the the instabilities of (5), which this
letter addresses.

Fig. 4: Two-dimensional plane occupied with charges. X and
O denote unblocked an blocked levels, respectively. I’s denote
the E’s.

is a background field, − 1
g
. An equilibrium point where

E can be placed can always be found between any two
unblocked ξ’s. In the continuum limit, where the level
spacing is the smallest energy scale, this defines a charge
density, λ(ξ), on the real axis, which is composed of
the contribution of both the E’s and the unblocked ξ’s.
Assuming a constant density of state ρ0 for the ξi’s, we
may also define ρ(ξ) = 2ρ−10 λ(ξ). In addition to the E’s on
the real axis some of the E’s arrange themselves in the
complex plane. In the continuum limit the distribution
of the complex E’s is given by line densities on arcs in
the complex plane [17,18]. The distribution of the E’s
may be termed as the “Richardson spectrum” (see fig. 4).
The position and shape of the arcs is determined by
electrostatic equilibrium. ρ(ξ) may be understood as the
generalization of the occupation number of excitations in
the BCS approach. Indeed, To effect an excitation one
must change the density ρ(ξ).
For a given ρ(ξ), and assuming m arcs in the complex

plane harboring the complex E’s, a continuum limit
solution for the charge distribution is given in the following
form [17,18]:

h(ξ) =

∫
R(ξ)ρ(ξ′)
R(ξ′)(ξ′− ξ)dξ

′, R(ξ) =

√√√√ m∏
i=1

(ξ− ξi)2+∆2i .

The jump discontinuity of the electric field are caused by
the line density of the charges. The jump discontinuities
of h consists of a jump discontinuity on the real axis, and
jump discontinuities on the branch cuts of R(ξ) which are
drawn as curved lines stretching from ξi+ i∆i to ξi− i∆i.
The values of ξi and ∆i are constrained by self-consistency
conditions: ∫

ρξl

R(ξ)
=
2

g
δl,m−1, l�m− 1. (13)

Note that for m= 1 we get the usual self-consistency
condition, where ρ(ξ) is to be identified with 2n(ξ)− 1.
The energy of the Richardson state is given by

∑
νEν +∑

j ξij , where ξij are the blocked states. As h(ξ) encodes
the density of E’s, it is possible to compute the energy
and the number of particles (here R(ξ) =R(ξ)):

E =

∫
[ξR(ξ)]+ ρ(ξ)

R(ξ)
dξ, N =

∫
[R(ξ)]+ ρ(ξ)

R(ξ)
dξ,

(14)
where [. . .]+ denotes taking the non-negative (polynomial
in ξ) part of the Laurent expansion around infinity.
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Quasi-particles around instability point. – To
describe the Cooper instability in the framework of
Richardson’s approach. Consider a normal-metal state
placed below Tc. Since ∆= 0 no arcs exist and all the
E’s are on the real axis, distributed such that the total
charge density corresponds to Fermi distribution. The
instability manifests itself as a vanishing of h(ξ) at two
complex conjugated points. Since the field vanishes, these
points may be occupied by E’s. Indeed, collisions will
cause these to start populating until a full arc is formed,
describing the equilibrium superconducting state, as
described in fig. 2.
By inserting (8) into the the expression for h(ξ), one

sees that points of vanishing field appear for ∆<
∆2p
Tc
(this

conclusion was reached by semiclassical means in [4]).
The resolution of the instability is achieved when an arc
appears near the Fermi energy, in addition, that is, to the
arc at ξ1.
We now study the state with two arcs, m= 2. By

Hellmann-Feynman, q(ξi) =
δE
δξi
, assuming that the

distance between the two arcs is much larger than their

size, one gets: q(ξ) = (ξ−ξ1)(ξ−ξ2)
R(ξ) . Note that this form of

q(ξ) dictates the following excitation representation: Both
well below ξ1 and well above ξ2, q(ξ) = 1 and excitations
are electron-like. In the region between ξ1 and ξ2 but
well away from both gaps, q(ξ) =−1, and excitations are
hole-like. This choice does not agree with the standard
choice of the excitation representation. However, the
choice of excitation charge far away from the gaps is a
matter of representation.
Consider now transitions due to collisions between

states characterized by two arcs. To compute the tran-
sition rates, one must compute the matrix element of
the phonon interaction between two different Richardson
states. We are interested in solving the kinetic equation
only to first order in ∆

T
, so one may assume that one of

the excitations involved in the transition, has energy of
order T , and thus has the same character as in the normal
metal. Under such an assumption, the transition of this
excitation to a level near the gap is dictated by the one
particle density matrix of the target level. The one particle
density matrix consistent with q(ξ) computed above, can
be easily found. From its form, it is easy to see that, the
transition rates may be defined by coherence factors just
in the BCS case, and these are given by u2(ξ) = 12 (1− q),
v2(ξ) = 12 (1+ q).
The other ingredient in a kinetic approach is the energy

conservation delta function which features in the Fermi
golden rule. To study energy conservation we make use of
the following picture valid close to Tc due to Pethick and
Smith [7], which states that a change in the number of
particles may be divided into a contribution of the change
of the normal charge, δqn =

∫
qδρdξ and superconducting

charge, δqs =
∫
ρδqdξ, as follows: δN = δqs+ δqn. Starting

from the expression for the energy of the level, we now
write down the variation with respect to a change in the

Fig. 5: The two branched dependence of ∆ on the injection
rate Ĩ, both in units of Tc, for cδT =−0.002, a=−1.23 and
b= 0.276. The state is not stable under the dashed line.

density ρ of the combination W =E− νN . Consider the
energy of an excitation next to ξi:

δW =

(√
(ξ− ξi)2+∆2i
(−)i +(ξi− ν)q(ξ)

)
δρ+(ξi− ν)δqs,

the (−)i arises from the unusual choice of the excitation
representation discussed above (we assume ξ1 < ξ2 < 0).
The energy of an excitation, neglecting the charge transfer
to the condensate, is written as εν(ξ) =

δW
δρ
|δqs=0.

The kinetic equation may now be written and solved
taking into account the energy change due to charge trans-
ferred to the condensate (δqs). It turns out however, that
these contribute to a lower order. As a result the distri-
bution function turns out to be ρ(ξ) = tanh( εν=0(ξ)2Tc

)+ δρ.
δρ is found by balancing the injection rate with the relax-
ation provided by the linearized collision operator. The
linearization is performed around the normal-metal state,
so the relaxation times are independent of ∆, which yields
that δρ in (8) depends only on I and temperature.
To obtain ξ1 and ξ2 we separate the contribution of the

supercurrent from the region close to ξ1 in energy and the
region close to ξ2. We demand that the charge carried away
as supercurrent associated with a particular region is equal
to the amount of charge transferred to the condensate
by collision into that region. The superconductor velocity
vs is the same regardless of the region considered, while
the contribution to the density of superconducting pairs
from region i is proportional to ∆2i . Collisions to region i
transfer charge to the condensate proportional to ξi∆i.
As a result, one obtains ξi =− b

2
√
2
Ĩ ∆i
∆21+∆

2
2
. Plugging

these estimates into the self-consistency equations (13)
one obtains equations relating the gaps to the current
intensity:

∆2i +2ξ
2
i = cTcδT − aĨ −Tc∆ī

∣∣∣∣ ξīξī− ξi
∣∣∣∣ , (15)

where 1̄ = 2 and 2̄ = 1. A sketch of the results for the same
parameters for which fig. 5 is drawn is given in fig. 6.
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Fig. 6: (Colour on-line) The dependence of the two gaps on
the injection Ĩ. The dashed lines are ξ1 and ξ2 (ξ2 lies above
ξ1). The solid lines are (from bottom to top), ξ1−∆1, ξ1+∆1,
ξ2−∆2, ξ2+∆2, and delineate the gaps. The approximations
leading to this solution become poorer as the gaps approach
one another.

Conclusion. – We have seen that non-equilibrium
effects may excite a mode by which a superconductor
develops another gap. The possibility of having two gaps is
most easily revealed by considering the multi-arc Richard-
son states. These gaps will manifest themselves in the same
type of experiments that reveal the BCS gap. A probe
for the density of states (such as another tunnel junc-
tion) must be coupled to the injection region. In situations
where the current exceeds the instability point, a multi-
gapped structure is predicted. The multi-gapped state also
manifests itself in oscillations of the order parameters.
Experiments involving a Josephson junction coupled to
the injection region will be sensitive to these oscillations.
The form of oscillations can be found using the quantum
to classical correspondence between Richardson’s states
and the semiclassical solutions found in [12]. Applying this
relation to an exact description of the oscillatory behavior
will be the subject of future work, however without further
analysis one can conclude that, due to the fact that the
system describes two condensates at energies separated
by a distance δξ, the oscillations will predominately be at
a frequency of 2δξ

�
. We have developed the theory in the

simplest case where the two condensates are well separated
at a temperature near Tc. It is interesting to extend the
theory beyond this simple application. This may be done
as a kinetic theory is possible due to the fact that the
transition rates between Richardson states and the energy
of any such state is known or feasibly computable [19].
The complications of solving the kinetic theory may be
overcome by using a numerical approach.
In the specific situation discussed in this paper two

spectral gaps appeared. The theory, however, extends to
cases where more than two gaps exist. Roughly speaking,
additional gaps appear at points, ξ0, where n(ξ0) = 1/2

and pairing correlations are small enough as not to
suppress the appearance of a new gap. Experimental
setups can potentially be created that would deform
the distribution function so strongly as to create such
points (the distribution function must be made to pass
through 1/2 and the other gaps must be suppressed).
Given the distribution function, a quantitative treatment
can be given using the generalized self-consistency condi-
tions, (13).

∗ ∗ ∗

I would like to acknowledge many helpful discussions
with B. Spivak, A.Nahum, M.Moshe, G.Gorohovski,
F. Rashed, B. Laikhtman, O. Agam and D. Orgad.
This research was funded by ISF grant 206/07.

REFERENCES

[1] Clarke J., Phys. Rev. Lett., 28 (1972) 1363.
[2] Chi C. C. and Clarke J., Phys. Rev. B , 20 (1979) 4465.
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