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Abstract – We propose a model of network growth aimed at mimicking the evolution of the World
Wide Web. To this purpose, we take as a key quantity, in the network evolution, the centrality or
importance of a vertex as measured by its PageRank. Using a preferential attachment rule and a
rewiring procedure based on this quantity, we can reproduce most of the topological properties of
the system.
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In recent years we have witnessed an incredible growth
in size and complexity of some technological systems as the
World Wide Web. Due to its long exponential growth, the
size of the WWW has grown to such an extent that, nowa-
days, it is possible to apply standard methods of Statistical
Physics in order to describe it. For this reason the field of
Complex Networks has been originated in the last century
from the first analysis of the WWW [1,2]. Since then it has
developed in order to model the growth of various tech-
nological systems [3–6] and to describe the topology and
growth of various other systems ranging from Collabora-
tive Systems [7,8], to Biology [9] and Finance [10,11]. The
WWW has been attracting the interest of many differ-
ent scientific communities in the attempt to understand
how it evolves. This effort has determined the flourishing
of several generative models [12–14] devoted to capture
some of the most common properties of the Web [15]. Here
we present a contribution aimed at discovering the micro-
scopic (at user level) forces shaping these self-organized
structures.
The Barabási-Albert (BA) model was historically the

first one to reproduce one of the experimental evidence
of these systems, namely the power-law distribution of
the node degree [12] (the number of link connected to
a specific node). In this model, at every time step, new
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vertices enter the system and they are connected to the
old ones by drawing a fixed number m of vertices to them.
These end-vertices are chosen with a probability given by
their degree. It was shown that the BA model produces
networks where the degree k of a vertex is distributed
according to a power law P (k)∼ k−γ with an exponent
γ equal to 3 (in analogy with the values observed in the
various real networks). In the case of directed networks as
the WWW, where the edges (in this case the hyperlinks)
are directed, i.e. can be followed only in one direction, one
deals with both in- and out-degree (edges pointing in and
edges pointing out).
Real networks are also characterized by various topologi-

cal properties often related to the specific system under
consideration. For example, the WWW is known to have
a “Bow Tie Structure” (BTS) [16,17] (see fig. 1) where
some vertices are mutually reachable one from another
(the Strongly Connected Component SCC), some allow to
enter into the SCC (and they form the IN component),
others are reachable from the SCC and form the OUT
component [12,18].
Experimentally, the WWW is known to have a power-

law in-degree exponent γin = 2.1, a power-law out-degree
exponent γout = 2.3 (even if some recent analysis reports
the existence of cut-offs [19]), a value of the SCC of about
60%–70% and an IN and OUT components of similar size
for about 20%–15% of the total.
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Fig. 1: The bow-tie structure of the WWW. On top of IN,
OUT and SCC, there are also pages directly connecting IN
and OUT (Tubes); pages pointing nowhere (Tendrils) as well as
disconnected components, the latter two kinds of pages are not
shown in this picture and account for a very small proportion
of the web.

Furthermore, in the WWW it is possible to assess
the importance or centrality of a particular vertex by
measuring its PageRank [20]. This measure is the core of
the success of the search engine Google, founded to rank
value of the pages on the web. The PageRank, PR(i), of
a vertex i is defined through the equation

PR(i) = α
∑

j→i

PR(j)

kout(j)
+
α

N

∑

j∈D
PR(j)+

1−α
N

(1)

and can be considered as the fraction of time spent by a
random walker on the particular vertex i (D is the set of
nodes which do not have out-going links). Since this quan-
tity is commonly considered a good measure of popularity
of a web page, we consider it also a good measure of the
probability to attract future hyperlinks. For this reason,
we define here a model where the preferential attachment
mechanism is based on the PageRank quantity.
In-degree and PageRank are known to be correlated

(at least in a certain interval of in-degree values) [21],
nevertheless the results of the two models differ from
each other. The choice of this “microscopic” mechanism
of growth coupled to a rewiring rule, reproduces nicely
some of the properties of the WWW. Furthermore since
PageRank determines the traffic on selected pages by
putting them upfront in search engines, this mechanism
could represent one of the simplest way to couple topology
and dynamics on a network in the spirit of self-organized
models [22]. Finally, since PageRank is often interpreted
in terms of random walkers on the graphs, this model can
be compared with other models [23–25] using other choices
of preferential attachment rules.
In the classic Barabási-Albert (BA) model new vertices

receive incoming links with a probability proportional
to their degree. More recently [14] proposed a model
that complements the BA model by choosing the end-
point of a link with probability proportional to the in-
degree and to the PageRank of a vertex. There are
two parameters α, β ∈ [0, 1] such that α+β � 1. With

probability α a node is chosen as the end-point of the
the l-th edge with probability proportional to its in-
degree (preferential attachment), with probability β it
is chosen with probability proportional to its PageRank
value, and with probability 1−α−β at random (uniform
probability). The authors show by computer simulation
that with an appropriate tuning of the parameters the
generated graphs capture the distributional properties of
both PageRank and in-degree. We refer to this model as
the PRU model.
Also in our model the key quantity that determines the

probability of old vertex acquiring a new link is instead
the PageRank. In other words, the larger is the PageRank
value of a vertex, the larger is the probability to receive
further links from the newly added vertices. Contrarily to
both the original BA and PRU model, this model allows
the use of directed edges whose proportion is ruled out
by a model parameter; finally, in the spirit of generalized
BA model [26], also the possibility of rewiring between
different existing vertices is taken into account. Since this
fundamental modification, the structure arising from this
model contains cycles and SCCs. All the previous models
do not encompass an explicit mechanism for the rewiring
and do not contains SCCs. In order to solve this major
drawback an artificial rewiring is arbitrarily introduced
after the generation of the graphs adding new links or
inverting the direction of a fraction of the links. Our model
solves this major drawback considering the rewiring as
part of the generative mechanism.
While, macroscopically, data analysis shows that, at

least in a finite region, the in-degree of a vertex and its
PageRank are correlated, it is interesting to consider a
model where PageRank appears as a microscopical rule of
growth.
We start from an initial network of few (i.e. 3–5) vertices

and edges representing the network at time t= t0. Time
is discretized and at every successive time step t, there
are two possibilities: either a new node is introduced with
probability Pr (node growth) or (with the complementary
probability (1−Pr)) a new link is created in the network.
In the first case (new vertex), the new node brings

a certain number m of new edges. The end-vertices are
chosen according to their PageRank value. The parameter
m is a random variable chosen from a uniform probability
distribution F (m), defined in the interval [1;m0], where
m0 is the number of nodes present in the initial core (to
avoid creating a number of edges more than the available
vertices). Once the edge has been created, the direction is
chosen out-going from the new vertex with probability Pv
and in-going with the complementary probability (1−Pv).
In the second case (new edge), a new link is added

between a pair of existing unconnected vertices. Both
of them are chosen with a probability related to their
PageRank. Actually the two probabilities, Pro for the out-
going and Pri for the in-going node, are not exactly those
one can obtain from the PageRank distribution. This is
due to the necessity of excluding the couples of vertices
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Fig. 2: A sketch of the model growth.

already connected each other. Therefore, if we take the Pro
as the value of PageRank for the origin vertex, we have to
compute Pri from the subset of vertices not connected with
the first one. With probability Pd we also add the opposite
edge (if it already does not exist), therefore creating a
bidirectional link between the vertices; with probability
1−Pd instead we keep only one edge. At the first time
step, after introducing a new link or a new node, we
calculate the new PageRank value of the nodes using the
power method. During the iterations, we instead use
the adaptive method [27] to accelerate the convergence to
the PageRank stationary point.
The three parameters describing the evolution of this

model (see fig. 2) are therefore Pr, Pv and Pd. As expected,
we do not notice any dependence upon the value of the
initial nodes m0. Actually, various m0 values were taken
as initial conditions (from 2 to 7), but neither the decay
exponent γ nor the BTS show significant differences in
their values. Since also PageRank is defined by assigning
a defined “teleportation” probability, our model does
depend upon the parameter α as well. In most of the
simulations we kept the original value assigned in the
original PageRank paper.
In the numerical simulations of the model we made an

exploration of the parameter space defined by the three
probabilities Pr, Pv, Pd checking:

– the degree distributions of the in and out degree are
power-law functions with the same decay exponents
observed in other works [12,18];

– the network topology is structured in order to identify
the BTS inside the network itself as showed in several
papers [16,17].

For every choice of the three parameters, we produced
an ensemble of 100 networks each composed by 10000
vertices.
Before proceeding to see what happens for different

values of the parameters Pr, Pv and Pd, we consider two
limit cases which reproduce two well known networks. The
first one is obtained by setting Pr = 0 and Pd = 1 (Pv can
be any when Pr = 0), which reproduce a situation similar
to the Random Graph model of Erdős-Rènyi (ER) [28]
obtaining a Poisson distribution both for in-degree and
out-degree.
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Fig. 3: In-degree distribution in the BA limit with Pr = 1 and
Pv = 1; this is an ensemble of 100 networks of 10000 nodes.
Here the decay exponent is γ = 3.01 and the error, obtained
with the likelihood method, is σ= 0.02.

The second case should instead mimic the Barabási-
Albert (BA) Model, whose dynamic is obtained by setting
Pr = 1 and Pv = 1 (Pd here is not important if Pr = 1).
Note that while the dynamic is similar, the microscopic
quantity in the preferential attachment is not, since we use
the PageRank instead of the degree. Therefore different
choices of α can trigger different quantitative results.
Indeed with this choice of the parameters (for which the
network can be considered as undirected) and a value of
α� 0.85, the degree distribution is a power law with a
decay exponent γ = 3.01± 0.02 (see fig. 3 where fit has
been done according to the likelihood method [29]), in
good agreement with the value expected in the BA Model
(γ = 3). Instead, when α= 1 and no randomness is present
(in the form of teleportation probability) the results are
quantitatively different. That is different α values produce
still the power-law degree distribution with different values
of the exponent.
Exploring the other possible parameters choices,

(provided we are enough far away from the ER limit) we
obtain a whole series of power-law distributions differing
for their exponents. A sketch of a typical case is shown in
fig. 4.
Indeed, it is possible to observe a power-law function

both for in-degree and out-degree distribution, some really
similar to the real ones of the WWW, with decay expo-
nents close to the experimental ones. For instance, values
of Pr = 0.3 Pv = 0.9 Pd = 1 produce decay exponents of
γin � 2.1 and γout � 2.7, closer to the ones observed in the
real data [12,18]. In a recent work [19], WWW out-degree
distribution seems to be dominated by exponential cut-
off, in contrast with our model and previous Web analy-
sis. Anyway we remember that the cut-off effects depends
by a number of factor like on how much costly it is the
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Fig. 4: (Colour on-line) The upper two panels represent in-
degree (left) and out-degree (right) distributions for Pr = 0.2,
Pv = 0.8 and Pd = 0.4. The lower two panels represent in-
degree (left) and out-degree (right) distributions for the values
Pr = 0.3, Pv = 0.9 and Pd = 1.

Table 1: Size (percentage on the total) of the various BTS
zones with respect to parameters value. Here we show the
three main parts of the BTS: SCC, IN and OUT components.
With TTD we intend the rest of the BTS (Tubes, Tendrils and
Disconnected components).

Pr Pv Pd SCC IN OUT TTD

0.9 0.3 1.0 77.53 6.33 15.88 0.26
0.8 0.8 0.4 56.59 40.37 2.71 0.33
0.8 0.4 0.4 78.66 9.48 11.48 0.38
0.5 0.4 0.8 85.06 6.34 8.47 0.13
0.5 0.4 0.4 83.54 7.18 9.10 0.18
0.2 0.8 0.8 72.46 25.58 1.88 0.08
0.2 0.8 0.4 55.30 41.80 2.60 0.30
0.2 0.4 0.8 92.74 2.81 4.43 0.02

generation of out-degree. Furthermore, for particular kind
of networks the cut-off is also observed in the in-degree
distribution. According to these researches [30,31] the cut-
off effects seems to disappear when the number of edges
increase and the network become less sparse. Similarly,
a cut-off is not observed in Wikipedia where the average
number of out-degrees per length of page is on average
higher than that for normal Web.
We then passed to analyze the parameter space with

respect to the Bow-Tie Structure [16,17] in the network
topology. By considering the results summarized in
table 1, we note that the SCC size is mostly governed by
the parameter Pr. In particular, the smaller is Pr, the
bigger is the size of the SCC zone.
A large value of reciprocity probability Pd accelerates

this process. On the other hand, Pv regulates the dimen-
sion of the other two zones of the BTS: the IN and the
OUT component. Indeed, Pv determines the orientation of
the new links introduced by the new node. For example,
the smaller its value and the bigger the OUT component.

Unfortunately experimental data [17,18] on the real
dimension of the zone in WWW are not univocal. By
comparison with the similar (but more compact case) of
Wikipedia we expect a large SCC zone (the largest compo-
nent of the structure with values around the 70%). The
remaining is divided mostly between the other two set, IN
and OUT. The other zones together, usually take only a
small proportion of the network. It is a well-known fact
that the proportions of the BTS main components seem
to be dependent on the crawl considered. If the seed of
the crawl is not properly chosen we can not discover at
all the nodes in the IN component. The relative dimen-
sions depends also by the maturity of the network and it
is proved that nodes migrate from partition to partition
as time evolves [32]. Actually the SCC becomes larger as
consequence of the densification. To avoid the problem of
the crawl dependence as much as possible, we measured
the BTS zone dimensions taking randomly from the graph
finally builded, a node and then “burn” the graph forward
and backward respect to the chosen vertex. We collected
100 nodes randomly, we burned forward and backward
the graph and then we intersected the sets of nodes
obtained for each node. The intersection of these sets is the
SCC, the backward node set excluded from the inter-
section is the IN component and the forward node set
excluded is the OUT component (the rest account for
Tendrils, Tubes and Disconnected). Within these 100
nodes we choose also the one with the highest degree to
increase our probability to reach the right values of the
BTS zones.
In most of the cases the model reproduces a BTS with

a large SCC and two smaller IN and OUT components.
More particularly, by tuning the parameter values of Pr,
Pv and Pd to reproduce the observed degree distribution
exponents, the model produces a SCC core with a dimen-
sion larger than 70% and an OUT component smaller than
the IN component.
Different choices are possible as shown in fig. 4, i.e. the

case Pr = 0.2, Pv = 0.4 and Pd = 0.8 which shows a nice
agreement with the experimental BTS (see table 1), an
out-degree decay exponent γout � 2.8 and in-degree decay
exponent γin � 2.4.
Finally, we considered the structure of bipartite cliques

present in the model. As previously shown in [33], these
structure accounts as elementary elements for the forma-
tion of communities and, as much as the cycles [34],
they account for the robustness of the system. They are
also particularly important for the validation of WWW
models. This kind of structure could help to find commu-
nities in a graph [35] and maybe could also help to see if the
model proposed is able to reproduce groups of nodes which
share the same information and topology. Almost any
model, apart from the copying one [25], does not naturally
form bipartite cliques (BC) despite their presence in the
real WWW. In our model we find an exponential decay-
ing distributions of the number of bipartite cliques (i, j).
This quantity has been computed by using a semi-external
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algorithm for computing bipartite cores. The algorithm
in [36], is an external one that stores the graph in
secondary memory in a number of blocks. Every block
b, b= 1, . . . , [N/B], contains the list of successors and the
list of predecessors of B vertices of the graph. The idea
is that, at each iteration, we load in the main memory a
single block, and we try to compute all the bipartite cliques
(BC) inside that one; at the same time, we keep track (in
a buffer file), of the partially computed BC, i.e. the ones
that could become BC depending on the part of the graph
that either we do not have seen yet or we have seen without
knowing it could have been part of a BC. Our algorithm
needs to bring in main memory each block at most twice;
the first when it builds the partially computed BC, and the
second when it looks for the missing parts. By focussing on
the clique (3,4) we find that their presence in the graph
is exponential distributed and therefore slightly smaller
than the real case. We comment that feature by noting
that our simplified model does not take into account all
the rewiring rules taking place in the WWW which makes
it more compact and more reciprocal. So our model does
not reproduce successfully a community structure.
In summary, we presented a simplified model of WWW

growth, that even if inspired to the traditional BA model,
is based on a quantity related to WWW development and
growth. Despite its simplicity, the model reproduces the
power-law function for both the in-degree and the out-
degree distributions. Also, it gives non-trivial values for
the BTS components.
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