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Abstract – The Kaluza-Klein (KK) modes of a massive scalar field on a 3-brane embedded in a
six-dimensional multiply warped spacetime are determined. Due to the presence of warping along
both the extra dimensions the KK mass spectrum splits into two closely spaced branches which is a
distinct feature of this model compared to the five-dimensional Randall-Sundrum model. This new
cluster of the KK mode spectrum is expected to have interesting phenomenological implications
for the upcoming collider experiments. It is also shown that the effective scalar self-couplings of
all orders are enhanced due to the presence of an extra warped dimension. Such a scenario may
also be extended for even larger number of orbifolded extra dimensions.

open  access Copyright c© EPLA, 2010

Introduction. – The Randall-Sundrum (RS) model [1]
was originally proposed to resolve the hierarchy between
the scale of weak and gravitational interactions, mW ∼
102GeV and MP ∼ 1018GeV, respectively. The RS model
is based on a truncated AdS5 spacetime, bounded by
two 4D Minkowski walls, often called UV (Planck) and
IR (TeV) branes. The curvature in 5D induces a warped
geometry on the brane which redshifts scales of order MP
at the UV brane to scales of order mW at the IR brane.
Much work has been carried out on diverse aspects of such
models in the last few years. These include the attempted
resolution of the hierarchy problem [1,2], questions about
the localization of various types of fields on the brane [3],
particle phenomenology in the context of braneworld [2]
and various other cosmological consequences [4]. The
actual existence of warped extra dimensions as well as
a firm foundational basis for these models still remain
open issues. However, it has been widely recognised
that one of the key signature for extra dimensions can
be obtained from the collider physics by exploring the
contributions of various Kaluza-Klein (KK) modes in
scattering amplitudes. Though the original RS model was
formulated with only the gravity in the bulk, various other
models subsequently considered the implications of the
bulk standard model fields and their KK modes on the
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brane. The first step in this direction was to study the
role of a scalar field in the bulk.
In recent times several extensions of the RS model have

been proposed with more than one extra dimension [5,6].
Most of these models consider several independent S1/Z2
orbifolds along with four-dimensional Minkowski space-
time. Leblond et al. showed a set of consistency conditions
for braneworld scenarios with a spatially periodic inter-
nal space in [7], from which it is derived that the neces-
sity of a negative tension brane appears in five dimensions
only and this is not the prerequisite at higher-dimensional
generalizations [7]. It is also apparent from the multigrav-
ity scenario discussed in [8] that the radion stabilization
problem and the presence of negative tension brane is
an artifact of five-dimensional spacetime. The non-trivial
curvature of the internal space in case of two or more extra
dimensions provides the necessary bounce configuration of
the warp factor without the need of any negative tension
brane [5].
An interesting model has been proposed in an alterna-

tive scenario in [9] where the warped compact dimensions
get further warped by a series of successive warping
leading to multiply warped spacetime with various
p-branes sitting at the different orbifold fixed points
satisfying appropriate boundary conditions. In this
scenario the lower-dimensional branes including the
standard model 3-brane exist at the intersection edges of
the higher-dimensional branes. The resulting geometry
of the multiply warped D-dimensional spacetime is
given by M1,D−1→{[M1,3×S1/Z2]×S1/Z2}× · · ·, with
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(D− 4) such warped directions. It has been argued that
this multiply warped spacetime gives rise to interesting
phenomenology and offers a possible explanation of
the small mass splitting among the standard model
fermions [9,10]. One of the interesting characteristics of
such a model is the bulk coordinate dependence of the
higher-dimensional brane tensions. Such a coordinate-
dependent brane tension is shown to be equivalent to a
scalar field distribution on the higher-dimensional brane
which constitutes the bulk for the 3-branes located at
the intersection edges of these higher-dimensional branes.
This emerges naturally from the requirement of the
orbifolded boundary conditions along the two compact
directions [9]. Such a scalar field distribution may have
several interesting phenomenological significance for the
TeV brane physics [9].
In this work we study the Kaluza-Klein modes of a

6-dimensional bulk scalar in the multiply warped space-
time. A higher-dimensional scalar, after compactification
appears with its zero mode and various KK modes in
the effective (3+1)-dimensional theory. We undertake
to study both massless and massive modes for a bulk
scalar as well as their effective self-coupling on the visible
brane.
The present article is organized as follows. In the second

section, we briefly discuss about the multiply warped six-
dimensional brane model. Then, in the third section we
focus on the bulk scalar and find out its equation of motion
and the Kaluza Klein modes. In the fourth section we
consider a bulk scalar field with a general self-coupling.
The effective values of the scalar couplings at different
order on the standard model brane are determined. We
conclude with discussions in the fifth section.

Model. – The spacetime that we are interested in is a
doubly warped and compactified six-dimensional one with
a Z2 orbifolding in each of the extra dimensions [9]. We
use the following notations for our discussion. The non-
compact directions are denoted by xµ (µ= 0, . . . , 3) and
the orbifolded compact directions are represented by the
angular coordinates y and z, respectively, with Ry and
rz as respective moduli. The corresponding metric for the
six-dimensional spacetime is given by

ds2(6) = b
2(z)[a2(y)ηµνdx

µdxν +R2ydy
2] + r2zdz

2, (1)

where ηµν =diag(−1, 1, 1, 1). The warp factors due to
the extra dimensions y and z are given by the functions
a(y) and b(z), respectively. Since orbifolding requires,
in general, a localized concentration of energy, the four
branes are considered to be located at the orbifold fixed
points, namely y= 0, π and z = 0, π. The braneworld
model is thus constructed from the following action (2)
which consists of a negative bulk cosmological constant
and coordinate-dependent brane tensions. The total

bulk-brane action is thus given by

S = S6+S5+S4,

S6 =
∫
d4xdy dz

√−g6 (R6−Λ),
S5 =

∫
d4xdy dz [V1 δ(y)+V2 δ(y−π)]
+
∫
d4xdy dz [V3 δ(z)+V4 δ(z−π)],

S4 =
∫
d4xdy dz

√−gvis[L− V̂ ],

(2)

where Λ is the bulk cosmological constant which is
necessarily negative. In general, the brane potential terms
(brane tensions) are V1,2 = V1,2(z), whereas V3,4 = V3,4(y).
The contributions due to possible 3-branes located at
(y, z) = (0, 0), (0, π), (π, 0), (π, π) are indicated by the term
S4. The solution of the Einstein equation for the metric (1)
in this action (2) leads to the warp factors in the following
form:

a(y) = e−c|y|, c=
Ryk

rz cosh(kπ)
,

b(z) =
cosh(kz)

cosh(kπ)
, k= rz

√
−Λ
M4
.

(3)

Note that the solutions are Z2 symmetric about y
and z directions. One can obtain the brane tensions by
considering the boundary terms. The brane tensions at
the two boundaries y= 0 and y= π are given by

V1(z) =−V2(z) = 8M2
√
−Λ
10
sech(k z). (4)

In other words, the two 4-branes sitting at y= 0 and
y= π have z-dependent tensions. Similarly, the boundary
condition for the infinitesimal interval across z = 0 and
z = π leads to

V3(y) = 0,

V4(y) = −8M
4 k

rz
tanh(kπ).

(5)

Note that, in this case the brane tensions are constants
unlike the previous case, but quite similar to the case
for the original RS model. The fact of gyy being a non-
trivial function of y, however, made it mandatory that the
two hypersurfaces accounting for the y orbifolding must
have a z-dependent energy density. This is, in fact, the
most interesting part of the model that we are currently
interested in. If there exists no other brane with a natural
energy scale lower than ours, we must identify the SM
brane with the one at y= π, z = 0.
In this model the solution of the hierarchy problem (i.e.

the mass rescaling due to warping) demands that unless
there is a large hierarchy between the moduli rz and Ry,
either of c and k must be small implying large warping
in one direction and small in the other. This particular
feature of this model is revealed from the relation c=
Ryk

rz cosh(kπ)
, which implies that for Ry ∼ rz a large hierarchy

in the y-direction (a situation very close in spirit with RS)
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necessarily leads to a relatively small k∼O(1) and hence
little warping in the z-direction.
In summary we are dealing with a braneworld which is

doubly warped and the warping is large along one direction
and small in the other. We now address the nature of the
Kaluza-Klein modes of a six-dimensional bulk scalar field
in such a braneworld.

Scalar modes. – We start with a six-dimensional free
massive scalar, Φ(xµ, y, z), of mass mφ. The action for the
scalar is

SΦ =
1

2

∫
d4x

∫ π
−π
dy

∫ π
−π
dz[−gMN∂MΦ∂NΦ−m2φΦ2],

(6)
where gMN is the six dimensional metric and mφ is of
the order of the Planck mass. We perform a Kaluza-Klein
decomposition of the scalar as a sum over the modes.

Φ(xµ, y, z) =
∑
np

φnp(x
µ)ξn(y)χp(z)√
Ryrz

(7)

Substituting this in the six-dimensional action one
arrives at a four-dimensional action for a free massive
scalar field with a canonical kinetic term in the scalar field
action provided the following normalization conditions are
satisfied: ∫

a2(y)ξn1(y)ξn2(y)dy= δn1n2 , (8)

∫
b3(z)χp1(z)χp2(z)dz = δp1p2 . (9)

Under this compactification the four-dimensional effec-
tive action of the scalar field becomes

Seff4D (φ) =−
1

2

∑
np

∫
(∂µφnp∂µφnp+m

2
npφ

2
np)d

4x (10)

As in usual Kaluza-Klein (KK) compactifications, the
bulk field Φ(xµ, y, z) manifests itself to a four-dimensional
observer as an infinite “tower” of scalar modes φnp(x)
with mass mnp. Note that, the KK mass term carries
two indices because of the two compact warped extra
dimensions. This in turn means that the usual five-
dimensional massive tower here further splits into a further
sub-tower because of the additional warped dimension.
These extra modes naturally will have their contributions
in the particle collider experiments and are expected to
produce enhanced signature for the extra dimensions.
From the action we find the following eigenvalue equa-

tions for the y and z part of the scalar field. The equation
for the “y” dependence of the scalar is given by

1

R2y

d

dy

(
a4
dξn(y)

dy

)
−m2pa2ξn(y) =−m2npa4ξn(y), (11)

while the equation corresponding to the “z” dependence
turns out to be

1

r2z

d

dz

(
b5
dχp(z)

dz

)
−m2φb5χp(z) =−m2pb3χp(z). (12)

The mass tower due to the extra dimension along the
z-direction is given by mp whereas the four-dimensional
KK mass tower is represented by mnp. It is interest-
ing to note from the above equations that like in the
5-dimensional case, the bulk scalar mass appears in
the equation for χp(z) to determine the parameter mp,
whereas mp enters into the equation for ξn(y) and
determines m2np, i.e. various KK mode masses in terms
of the two KK numbers p and n. Therefore to obtain the
KK mass spectrum we first determine the tower denoted
by mp and then using it as the input to eq. (11) we
finally achieve to obtain the desired mass spectrum in the
3-dimensional visible brane. Considering the allowed do-
main for the values of k we consider the following approx-
imated form of the warp factor: b(z)∼ e−k(π−z) = e−kz̃.
Now redefining the variable as zp =

mp
k′ e

kz̃ where k′ = k
rz

and the function as χ̃p(z) = e
− 52kz̃χp(z), eq. (12) can be

recast as

zp
2 d
2χ̃p

dz2p
+ zp
dχ̃p
dzp
+(zp

2− ν2φ)χ̃p = 0, (13)

where ν2φ =
(
m2φ
k′2 +

25
4

)
, mφ being the bulk mass of the

scalar field. The solutions of the above equation are the
Bessel functions of order νφ

χp(z) =
1

Np
e
5
2kz̃
[
Jνφ

(mp
k′
ekz̃
)
+ bpYνφ

(mp
k′
ekz̃
)]
, (14)

where Np is the normalization constant and bp is an
arbitrary constant.
Following the condition that the left-hand side of

eq. (13) is self-adjoint, the first-order derivative of χp(z)
must be continuous at the orbifold fixed points z = 0
and z = π. This leads us to the spectrum for mp. From
the condition of self-adjointness, we approximately get a
condition

5

2
Jνφ(xpνφ)+xpνφ J

′
νφ
(xpνφ) = 0, (15)

where xpνφ =
mp
k′ e

kπ.
After obtaining the z-dependent part of the scalar

KK modes and the corresponding spectrum we solve the
y-dependent part of the modes and finally arrive at the
full spectrum of the KK modes from the point of view of
a 3-brane observer sitting at the visible brane.
The solution of eq. (11) yields ξn(y) as Bessel function of

order νp =
√
4+

mp2

k′2 multiplied by a growing exponential

factor as

ξn(y) =
1

Nn
e2c|y|

[
Jνp

(mnp
k′
ec|y|
)
+ bnYνp

(mnp
k′
ec|y|
)]
.

(16)
Here Nn is the normalization constant and bn is an

arbitrary constant.
Once again following the condition that the left-hand

side of eq. (11) is self-adjoint, the first-order derivative
of ξn(y) must be continuous at the orbifold fixed points.
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Table 1: The KK mode masses mnp (in TeV) for different values of n and p.

mφ = 0.01k
′ mφ = k

′

νp ν1 ν2 ν3 ν4 ν1 ν2 ν3 ν4

m1p 5.04 6.61 8.26 9.99 5.11 6.69 8.34 10.05

m2p 8.44 10.26 12.14 13.98 8.53 10.36 12.23 14.15

m3p 11.69 13.62 15.61 17.56 11.79 13.72 15.71 17.73

m4p 14.89 16.89 18.95 20.97 14.99 17.00 19.06 21.15

This gives us the equations from which we obtain the mass
spectrum, mnp. Applying the above condition in eq. (16)
at the location of the visible brane at y= π and using
ecπ� 1 we obtain the following transcendental equation:

2Jνp(xnp)+xnp J
′
νp
(xnp) = 0, (17)

where xnp =mnpe
cπ/k′. The mass spectrum mnp thus is

obtained from the solution of the above transcendental
equation.
In the five-dimensional case the order of the Bessel

function depends on the mass of the scalar field. Therefore
for a given bulk scalar the KK modes are given by the
wave functions (Bessel functions) which are of a fixed
order. However, in the six-dimensional case we can have
several orders of the Bessel function representing the KK
modes because the order νp can take up different values for
different values p, i.e. for different values of mp. Therefore
for each mass splitting due to z-direction we will obtain a
spectrum of KK modes. Hence, we obtain extra splitting
in the spectrum over the usual 5-dimensional scenario. In
table 1 we show explicitly the KK modes for two given
values of bulk scalar mass.
Once again, like the 5-dimensional case, the scalar KK

mode masses are suppressed by the warp factor. Taking
mφ of the order of the Planck scale we find that the light
KK modes have masses in the range of TeV. The expo-
nential supression can be understood from the equation
of ξn(y) which shows that the modes are peaked near
the visible brane at {y= π, z = 0} [10]. However in this
case a much larger number of KK modes of mass ∼TeV
appear in comparison to its 5-dimensional counterpart
and are expected to produce additional contributions to
various processes involving KK modes of the bulk fields
in the forthcoming collider experiments at TeV scale. For
this the value of the effective scalar self-interaction on
the brane as well as that of the bulk scalars with brane
fermions must be determined.

Effective coupling for scalar self-interaction. –
To examine the self-interactions of a bulk scalar, we first
determine the normalization constants Np and Nn. Using
the normalization conditions from eq. (8) and eq. (9), we
obtain,

Nn � e
cπAn√
k′Ry

(18)

and

Np � e
kπBp√
k′rz
. (19)

Here,

A2n =

∫ 1
0

r[Jνp(xnpr)]
2dr (20)

and

B2p =

∫ 1
0

s[Jνφ(xpνφs)]
2ds, (21)

where r= ec(y−π) and s= e−kz.
Now, we focus our attention to the self-couplings of low-

lying modes. Consider a generic term in the action which
is of the form

Sint=

∫
d4x

∫ π
−π
dy

∫ π
−π
dz
√
G

λ

M4m−6
Φ2m(xµ, y, z), (22)

where λ is of order unity. Expanding in modes, the self-
interactions of the light KK states are given by

Sint =

∫
d4x

∫ π
−π
dy

∫ π
−π
dza4b5Ryrz

λ

M4m−6
φ2mnp (x

µ)

×
(
ξn√
Ry

)2m(
χp√
rz

)2m
. (23)

Thus the effective four-dimensional coupling constants
for the φ2mnp interactions are

λeff � λ
(
k′

M

)(2m−2) (
Me−cπ

)4−2m
e(3m−5)kπ

×
∫ 1
0

r4m−5
[
Jνp(xnpr)

An

]2m
dr

×
∫ 1
0

s5m−6
[
Jνφ(xpνφs)

Bp

]2m
ds (24)

The scale relevant to four-dimensional physics is
therefore not M but (Me−cπ)4−2me(3m−5)kπ. Note that
for m= 2 (i.e. Φ4 theory) the effective four-dimensional
coupling has an enhancement factor ekπ associated
with it, which is a new feature of the multiply warped
spacetime compared to its five-dimensional counterpart.
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Moreover, all the higher-order couplings for m> 2, which
acquires an enhancement factor e−cπ (just as in the case
of couplings in the five-dimensional model), are further
enhanced by the factor e(3m−5)kπ. This enhancement of
the effective scalar self-couplings at all orders including
the quartic coupling, due to the presence of an additional
warped dimension makes the multiply warped model with
a large number of KK modes phenomenologically more
interesting.

Conclusion. – In this work we have calculated vari-
ous Kaluza-Klein mode masses of a bulk scalar field in
a braneworld model with two warped extra dimensions.
Such bulk scalars are useful candidates for moduli stabi-
lization of warped braneworld models [11]. We have shown:

– An increase in the number of scalar KK modes within
a energy range of few TeV due to the presence of
an additional extra dimension over the usual five-
dimensional RS model.

– Such a clustering of modes near the TeV range devel-
ops in such a multiply warped model due to a large
warping in one direction and a small warping in the
other. This feature originates from the requirement
that there should not be any significant hierarchy
between the two moduli of the model [9].

– The effective scalar self-couplings on the standard
model brane for all the KK modes are shown to
receive enhancement at all orders due to the presence
of the extra warped dimension.

The enhancement of the number of KK modes will
take place for the other standard model fields also if
they are allowed to propagate in the bulk. Extending this
work for even larger number of warped dimensions [9],
where two clusters of 3-branes with an energy scale close
to the TeV scale and Planck scale are obtained, it is
easy to show a very large proliferation of the number
of KK modes for each bulk field, with masses close to
the TeV scale. Such an increase in the number of KK
modes is expected to modify the decay as well as the
scattering amplitudes of different processes in a TeV-
scale collider. Moreover, with increase in the number of
warped dimensions, the effective scalar self-coupling on the
visible brane acquires an additional enhancement factor
which depends on the respective modulus of the extra
dimension. The signature of these scalar KK modes and
their enhanced self-coupling on the brane therefore may
play a crucial role in determining the number of warped
directions in our search for extra dimensions in the collider
experiments.
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