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Abstract – In black-hole physics, the second law of thermodynamics is generally valid whether the
black hole is a static or a non-static one. Considering the universe as a thermodynamical system
the second law of black-hole dynamics extends to the non-negativity of the sum of the entropy of
the matter and the horizon, known as generalized second law of thermodynamics (GSLT). Here,
we have assumed the universe to be bounded by the event horizon where Bekenstein entropy-area
relation and Hawking-temperature are not applicable. Thus considering entropy to be an arbitrary
function of the area of the event horizon, we have tried to find the nature of the entropy function
for the validity of the GSLT both in the quintessence era and in the phantom era. Finally, some
graphical representation of the entropy function has been presented.
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In black-hole physics, the semi-classical description
shows that just like a black body, black hole emits
thermal radiation (known as Hawking radiation) and it
completes the missing link between a black hole and
a thermodynamical system. The temperature (known
as the Hawking temperature) and the entropy (known
as Bekenstein entropy) are proportional to the surface
gravity at the horizon and area of the horizon [1,2],
respectively (i.e. related to the geometry of the horizon).
Also this temperature, entropy and mass of the black
hole satisfy the first law of thermodynamics [3]. As a
result, physicists start speculating about the relationship
between the black-hole thermodynamics and Einstein’s
field equations (describing the geometry of space time). It
is Jacobson [4] who first derived Einstein field equations
from the first law of thermodynamics: δQ= TdS for all
local Rindler causal horizons with δQ and T as the
energy flux and Unruh temperature seen by an accelerated
observer just inside the horizon. Then Padmanabhan [5]
was able to formulate the first law of thermodynamics on
the horizon, starting from Einstein equations for a general
static spherically symmetric space time. The following nice
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equivalence:

Laws of thermodynamics ⇔ Analogous laws

of black-hole dynamics (Semi-classical analysis)

⇔ Einstein field equations (gravity theory)

(classical treatment)

perhaps shows the strongest evidence for a fundamental
connection between quantum physics and gravity.
Subsequently, this identity between Einstein equations

and thermodynamical laws has been applied in the cosmo-
logical context considering the universe as a thermody-
namical system bounded by the apparent horizon (RA).
Using the Hawking temperature TA =

1
2πRA

and Beken-

stein entropy SA =
πR2A
G
at the apparent horizon, the first

law of thermodynamics (on the apparent horizon) is shown
to be equivalent to Friedmann equations [6] and the gener-
alized second law of thermodynamics (GSLT) is obeyed
at the horizon. Also in higher-dimensional space time the
relation was established for gravity with Gauss-Bonnet
term and for the Lovelock gravity theory [7–9].
But difficulty arises if we consider the universe to

be bounded by the event horizon. First of all, in the
usual standard big-bang model the cosmological event
horizon does not exists. However, the cosmological event
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horizon separates from that of the apparent horizon only
for the accelerating phase of the universe (dominated
by dark energy). Further, Wang et al. [10] have shown
that both the first and second law of thermodynamics
break down at the event horizon, considering the usual
definition of temperature and entropy as in the apparent
horizon. According to them the applicability of the first
law of thermodynamics is restricted to the nearby states of
local thermodynamic equilibrium while the event horizon
reflects the global features of space time. Also due to the
existence of the cosmological event horizon, the universe
should be non-static in nature and as a result the usual
definition of the thermodynamical quantities on the event
horizon may not be as simple as in the static space
time. They have considered the universe bounded by the
apparent horizon as a Bekenstein system as Bekenstein’s
entropy-mass bound: S � 2πRA and entropy-area bound:
S � A4 are valid in this region. These Bekenstein bounds
are universal in nature and all gravitationally stable
special regions with weak self-gravity satisfy Bekenstein
bounds. Finally, they have argued that as the event
horizon is larger than the apparent horizon, so the universe
bounded by the event horizon is not a Bekenstein system.
In the literature, there are lot of works [11–18], dealing

with the thermodynamics of the universe bounded by the
apparent horizon as it is a Bekenstein system. On the
other hand, due to the above complicated nature of
the thermodynamical system: the universe bounded by
the event horizon (UBEH), there are few works related
to it. Recently, Mazumder et al. [19,20], starting from the
first law of thermodynamics, have examined the validity
of the GSLT which states that the time variation of the
sum of the entropy of the horizon (SH) and the entropy of
the matter inside it (SI) should be positive definite, i.e.,
d
dt (SH +SI)� 0. Without assuming any specific choice for
the entropy and the temperature on the event horizon,
they are able to show the validity of the GSLT with some
restrictions on the matter. In the present work, we try to
speculate the nature of the entropy function on the event
horizon assuming the validity of the GSLT. It should be
noted that the reason to stress the validity of the GSLT
is that it is a universal law, it holds in any generality,
irrespective of whether the thermodynamical system is an
equilibrium or a non-equilibrium one.
We start with homogeneous and isotropic FRW model

of the universe having line element

ds2 = habdx
adxb+ r̃2dΩ22, (1)

where r̃= ar is the area radius, hab =diag(−1, a2

1−kr2 ) with
k= 0,±1 for a flat, closed and open model and dΩ22 =
dθ2+sin2 θ dφ2 is the metric on the unit 2-sphere. The
Friedmann equations are

H2+
k

a2
=
8πGρ

3
(2)

and

Ḣ − k
a2
=−4πG (ρ+ p) (3)

with the energy conservation equation

ρ̇+3H (ρ+ p) = 0. (4)

The apparent horizon, a null surface is characterized by

hab∂ar̃∂br̃= 0

and hence the radius of the apparent horizon has the
expression

RA =
1√

H2+ k
a2

. (5)

On the other hand, the radius of the cosmological event
horizon (which exists for the accelerating model of the
universe in Einstein gravity) is given by

RE = a

∫ ∞
t

dt

a
= a

∫ ∞
a

da

Ha2
. (6)

As

RH =
1

H
(7)

is the radius of the Hubble horizon, so depending on
the curvature, the horizons are related by the following
relations:

I) k= 0:

RA =
1

H
=RH <RE ;

II) k=−1:
RH <RA <RE ;

III) k=+1:

either RA <RE <RH ,

or RA <RH <RE .

In refs. [19,20], Mazumder et al. have assumed the
validity of the first law of thermodynamics at the event
horizon (i.e., the Clausius relation −dE = TEdSE) where
the amount of energy crossing the event horizon during
the infinitesimal time dt is given by

−dE = 4πR3EH (ρ+ p) dt. (8)

Here the change in the horizon entropy during the small
time dt is

dSE =
4πR3EH

TE
(p+ ρ) dt, (9)

where (SE , TE) are the entropy and temperature of the
event horizon and (ρ, p) are energy density and thermody-
namic pressure of the fluid bounded by the event horizon.
Now, to calculate the variation of the matter entropy

we shall use Gibb’s equation [21]

TEdSI =dEI + pdV, (10)
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where SI and EI are the entropy and the energy of
the matter distribution, respectively. One may note that
for thermodynamical equilibrium, the temperature of the
matter is chosen as that of the event horizon (i.e., TE). As

V =
4

3
πR3E , EI =

4π

3
ρR3E , (11)

then from Gibb’s equation (10) and using the energy
conservation relation (4) the variation of matter entropy
has the expression

dSI = 4πR
2
E (ρ+ p)

(
ṘE −HRE

)
dt
1

TE
(12)

Differentiating the relation (6) for RE , we get

ṘE = (HRE − 1) . (13)

Hence combining eqs. (9) and (12) using (13), the time
variation of the total entropy is given by

d

dt
(SE +SI) = 4π (ρ+ p)

R2EH

TE

(
RE − 1

H

)
. (14)

Based on the above calculation Mazumder et al. [19,20]
have obtained the following restrictions for the validity of
the GSLT (i.e., ddt (SE +SI)� 0).

i) For a flat and open FRW universe the GSLT is valid
if the weak energy condition ρ+ p > 0 is satisfied.

ii) For a closed model, the validity of the GSLT demands
either the weak energy condition is satisfied and RA <
1
H
<RE or the weak energy condition is violated and

RA <RE <
1
H
.

iii) For the validity of GSLT, no specific form of entropy
or temperature on the event horizon is needed.

Here in this paper, the thermodynamical study is rather
in the opposite way. We start with the validity of the GSLT
and infer about the properties of the entropy function.
In analogy with Bekenstein’s entropy-area relation, we
assume the functional form of the entropy at the event
horizon be

SE =
f(A)

4G
(15)

with A= 4πR2E , the area of the event horizon. So,

dSE
dt
=
f ′(A)
G
2πREṘE , (16)

where the “dash” denotes differentiation with respect to
“A”. Thus using the expression (12) for the variation of
matter entropy, the time variation of the total entropy is
given by

d

dt
(SE+SI)=2πRE

[
(HRE − 1)
G

f ′(A)− 2RE
TI
(ρ+ p)

]
,

(17)

where TI is the temperature of the matter distribution and
we have TI = TE for the equilibrium thermodynamics.
Now we shall examine the validity of the GSLT in (a) the

quintessence era and (b) the phantom era.
(a) In the quintessence era, the weak energy condition

(ρ+ p > 0) is satisfied and so according to Davies [22]
ṘE > 0, i.e. RE >

1
H
. So from eqs. (12) (using (13)) and

(16) the horizon entropy will increase provided f ′(A)> 0
while the matter entropy is decreasing with time. Thus
the GSLT will be satisfied provided the expression within
the square bracket in eq. (17) is positive.
(b) On the other hand, in the phantom era, there is

a violation of the weak energy condition (ρ+ p < 0) and
Sadjadi [23] ṘE < 0, i.e. RE <

1
H
. So the matter entropy

will always increase and the horizon entropy will increase
or decrease depending on f ′(A)< 0 or f ′(A)> 0 and as
before the expression within the square bracket in eq. (17)
should be positive for the validity of the GSLT.
Therefore, for the validity of the GSLT, the entropy

function f(A) must have the following characteristics:
(a) In the quintessence era −f(A) is an increasing

function of A, i.e., RE such that

f ′(A)>
2REG (ρ+ p)

TI(HRE − 1) . (18)

(b) In the phantom era either f(A) is still an increasing
function of A with

0< f ′(A)<
2REG

TI

∣∣∣∣ (ρ+ p)HRE − 1
∣∣∣∣ . (19)

or f(A) is decreasing function of A, i.e. f ′(A)< 0 and the
GLST is identically satisfied in that era.
To have smooth entropy function across the phantom

barrier one must have f ′(A) = 0 on the barrier. As a result
both matter and horizon entropy becomes constant on the
phantom crossing. Thus the entropy function has either of
the two possible following behaviors:
I. The entropy function increases sharply in the

quintessence era so that the expression within the square
bracket in eq. (17) must have positive value to satisfy the
GLST and then f(A) reaches a maximum at the phantom
crossing, subsequently slowly decreases in the phantom
era so that GSLT is satisfied there. We speculate that the
graph of the entropy function throughout the quintessence
and phantom era will be as in fig. 1 with a maximum at
phantom crossing.
II. The entropy function increases in both the

quintessence and phantom era with a point of inflexion at
the phantom crossing as shown in fig. 2.
Now we shall examine whether the Bekenstein entropy-

area relation is valid on the event horizon. From the
inequalities (18) and (19) to have the GSLT on the event
horizon with Bekenstein entropy, the temperature of the
matter distribution should satisfy

TI > or < 2REG

∣∣∣∣ (ρ+ p)HRE − 1
∣∣∣∣ ,
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Fig. 1: The variation of the entropy function with the area
function where the entropy function attains the maximum
value at the phantom crossing.
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Fig. 2: The variation of the entropy function with the area
function; a point of inflexion can be found at the phantom
crossing.

in the quintessence or phantom era, respectively. This
temperature bound is quite distinct from Hawking
temperature and we have non-equilibrium thermodynam-
ics. Finally, one may note that throughout the calculation
no specific Einstein field equations have been used, only
the equation of continuity is needed to calculate the
variation of matter entropy. Therefore, the above result is
true in any gravity theory.

∗ ∗ ∗

RB wants to thank West Bengal State Govt, India for
awarding JRF.

REFERENCES

[1] Hawking S. W., Commun. Math. Phys., 43 (1975)
199.

[2] Bekenstein J. D., Phys. Rev. D, 7 (1973) 2333.
[3] Bardeen J. M., Carter B. and Hawking S. W.,
Commun. Math. Phys., 31 (1973) 161.

[4] Jacobson T., Phys. Rev Lett., 75 (1995) 1260.
[5] Padmanabhan T., Class. Quantum Grav., 19 (2002)
5387.

[6] Cai R. G. and Kim S. P., JHEP, 02 (2005) 050.
[7] Bamba Kazuharu, Geng Chao-Qiang, Nojiri S. and
Odintsov S. D., EPL, 89 (2010) 50003.

[8] Akbar M. and Cai R. G., Phys. Lett. B, 635
(2006) 7.

[9] Lancoz C., Ann. Math., 39 (1938) 842.
[10] Wang B., Gong Y. and Abdalla E., Phys. Rev. D, 74

(2006) 083520.
[11] Wang B., Gong Y. and Abdalla E., Phys. Lett. B, 652

(2007) 86.
[12] Setare M. R. and Saridakis E. N., Phys. Lett. B, 670

(2008) 1.
[13] Saridakis E. N., Phys. Lett. B, 661 (2008) 335.
[14] Charmouis C. and Dufaux J. F., Class. Quantum

Grav., 19 (2002) 4671.
[15] Kim J. E., Kyae B. and Lee H. M., Nucl. Phys. B, 582

(2000) 296.
[16] Gravanis E. andWillison S., Phys. Lett. B, 562 (2003)

118.
[17] Cai R. G., Zhang H. S. andWang A., Commun. Theor.

Phys., 44 (2005) 948.
[18] Bousso R. S., Phys. Rev. D, 71 (2005) 064024.
[19] Mazumder N. and Chakraborty S., Class. Quantum

Grav., 26 (2009) 195016.
[20] Mazumder N. and Chakraborty S., Gen. Relativ.

Gravit., 42 (2010) 813.
[21] Izquierdo G. and Pavon D., Phys. Lett. B, 633 (2006)

420.
[22] Davies P. C. W., Class. Quantum Grav., 5 (1988)

1349.
[23] Sadjadi H. M., Phys. Rev. D, 73 (2006) 063525.

40007-p4


