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Abstract – We derive the off-shell nilpotent and absolutely anticommuting Becchi-Rouet-Stora-
Tyutin (BRST) and anti-BRST symmetry transformations for the dynamical four (3 + 1)-
dimensional (4D) non-Abelian 2-form gauge theory within the framework of geometrical superfield
formalism. We obtain the (anti-)BRST-invariant coupled Lagrangian densities that respect the
above nilpotent symmetry transformations. We discuss, furthermore, this (anti-)BRST invariance
in the language of the superfield formalism. One of the novel features of our present investigation
is the observation that, in addition to the horizontality condition, we are theoretically compelled
to invoke some other physically relevant restrictions in order to deduce the precise (anti-)BRST
symmetry transformations for all the fields of a topologically massive 4D non-Abelian gauge
theory.

open  access Copyright c© EPLA, 2010

Introduction. – The central theme of our present
investigation is to exploit the potential and power of the
superfield formalism (see, e.g., [1]), that has been success-
fully applied in the context of (non-)Abelian 1-form,
Abelian 2-form and 3-form gauge theories (see, e.g., [2–4]),
in the description of the four (3 + 1)-dimensional (4D)
topologically massive non-Abelian gauge theory where
there is an explicit coupling between the non-Abelian
2-form (B(2) = 1

2! (dx
µ ∧ dxν)Bµν) gauge field Bµν =Bµν ·

T and the non-Abelian 1-form (A(1) = dxµAµ) gauge field
Aµ =Aµ ·T through the famous topological (B(2) ∧F (2))
term where the 2-form F (2) = 1

2! (dx
µ ∧ dxν)Fµν defines the

curvature tensor Fµν = ∂µAν − ∂νAµ+ i[Aµ, Aν ] corres-
ponding to the 1-form gauge potential Aµ. Here all the
gauge fields are defined in the adjoint representation of
the semi-simple non-Abelian gauge group SU(N).
Since the Higgs particles (that are responsible for

generating masses for the gauge particles and fermi-
ons in the domain of standard model of high-energy
physics) have not yet been observed experimentally, it has
become an issue of paramount importance to construct

(a)E-mail: malik@bhu.ac.in; rudra.prakash@hotmail.com

gauge-invariant theories that could provide masses to the
gauge particles and fermions without taking any recourse
to the Higgs mechanism. In this context, the study of 4D
topologically massive gauge theories of Abelian and non-
Abelian types has become quite popular because the latter
do provide a theoretical basis for generating masses for the
gauge bosons without exploiting any inputs from the Higgs
mechanism (see, e.g., [5]).
Recently, we have studied the 4D topologically massive

Abelian gauge theory within the framework of BRST
formalism [6]. Its straightforward generalization to the
non-Abelian topologically massive theory is non-trivial
because of some very strong no-go theorems [7]. There
are, at least, a couple of models [8,9], however, that
circumvent the severe structures laid down by the above
no-go theorems. In our present endeavor, we shall focus on
the dynamical non-Abelian 2-form gauge theory [9] and
study its BRST and anti-BRST structures by exploiting
its usual “scalar” gauge symmetry transformations within
the framework of the geometrical superfield formalism
proposed in [1–3].
One of the highlights of our findings is that the

gauge-invariant restrictions are invoked, in addition to
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the horizontality condition, for the exact derivation of all
the off-shell nilpotent and absolutely anticommuting
(anti-)BRST transformations. This observation, to the
best of our knowledge, is a new result within the frame-
work of the application of superfield formalism to a gauge
theory (without any interaction with matter fields).
Let us begin with the Lagrangian density for the four

(3 + 1)-dimensional (4D) topologically massive non-
Abelian gauge theory1 (see, e.g. [9] for details)

L0 = −1
4
Fµν ·Fµν + 1

12
Hµνη ·Hµνη

+
m

4
εµνηκB

µν ·F ηκ, (1)

where the 2-form F (2) = dA(1)+ i A(1) ∧A(1) ≡ 1
2! (dx

µ ∧
dxν)Fµν ·T defines the curvature tensor Fµν for the gauge
potential Aµ, 3-form H

(3) = 1
3! (dx

µ ∧ dxν ∧ dxη)Hµνη ·T
defines the compensated curvature tensor in terms of
the dynamical 2-form gauge potential Bµν and 1-form
(K(1) = dxµKµ ·T ) auxiliary field Kµ as
Haµνη = (∂µB

a
νη + ∂νB

a
ηµ+ ∂ηB

a
µν)−

[
(Aµ×Bνη)a

+(Aν ×Bηµ)a+(Aη ×Bµν)a
]

− [(Kµ×Fνη)a+(Kν ×Fηµ)a+(Kη ×Fµν)a
]
,

(2)

and the last term in the above Lagrangian density (1)
corresponds to the topological mass term where the
curvature tensor Fµν corresponding to the non-Abelian
1-form gauge field and the dynamical 2-form gauge field
Bµν are coupled together through B

2∧F (2).
The above Lagrangian density respects the usual infin-

itesimal “scalar” gauge transformations δg corresponding
to the non-Abelian 1-form gauge theory as (see, e.g., [9])

δgAµ = DµΩ≡ ∂µΩ− (Aµ×Ω), δgFµν =−(Fµν ×Ω),
δgBµν = −(Bµν ×Ω), δgHµνη =−(Hµνη ×Ω),
δgKµ = −(Kµ×Ω), δgL0 = 0, (3)

where Ω=Ω ·T is the infinitesimal SU(N)-valued “scalar”
gauge parameter. In addition, there exists an indepen-
dent “vector” gauge symmetry transformation in the
theory [9]. We shall exploit, however, the usual “scalar”
gauge symmetry transformations (3) (and corresponding
properties of the gauge invariance) for our present discus-
sion of the 4D topologically massive gauge theory within
the framework of superfield approach [1–3].

1We adopt here the conventions and notations such that the
background 4D Minkowski spacetime manifold has the flat metric
with signatures (+1, −1, −1, −1) and the group generators Ta of the
SU(N) group obey the Lie algebra [Ta, T b] = ifabcT c with structure
constants fabc (that are chosen to be totally antisymmetric in indices
a, b, and c where a, b, c . . .= 1, 2, . . . N2− 1). In the algebraic space,
we also have: (V ·W ) = V aWa and (V ×W )a = fabcV bW c for the
sake of brevity. The 4D Levi-Civita tensor εµνηκ (with µ, ν, η . . .=
0, 1, 2, 3) satisfies εµνηκεµνηκ =−4!, εµνηκεµνησ =−3!δσκ , etc., and
ε0123 =+1.

Our present paper is organized as follows. In the second
section, we recapitulate the bare essentials of the superfield
approach [1–3] to derive the (anti-)BRST symmetry trans-
formations and Curci-Ferrari (CF) restriction [10] for the
non-Abelian 1-form gauge theory where the horizontality
condition (HC) plays a decisive role. Our third section is
devoted to the derivation of (anti-)BRST symmetry trans-
formations for the non-Abelian 2-form gauge field and
1-form auxiliary field by exploiting a couple of physically
relevant restrictions that are distinctly different from the
HC. We discuss, in the fourth section, the (anti-)BRST
invariance of the topologically massive non-Abelian gauge
theory that is described by the coupled Lagrangian densi-
ties. Finally, in the fifth section, we summarize our results
and make some concluding remarks.

Nilpotent symmetry transformations for the
non-Abelian 1-form gauge theory: superfield
formalism. – In the superfield approach to BRST
formalism [1–3], one generalizes the 4D basic non-Abelian
gauge field (Aµ =Aµ ·T ) and fermionic (anti-)ghost
fields ( C̄ = C̄ ·T,C =C ·T ) to the superfields defined on
the (4, 2)-dimensional supermanifold. These superfields
are expanded along the Grassmannian directions of the
supermanifold as (see, e.g., [1,2])

Bµ(x, θ, θ̄) =Aµ(x)+ θ R̄µ(x)+ θ̄ Rµ(x)+ i θ θ̄ Sµ(x),
F(x, θ, θ̄) =C(x)+ i θ B̄1(x)+ i θ̄ B1(x)+ i θ θ̄ s(x),
F̄(x, θ, θ̄) = C̄(x)+ i θ B̄2(x)+ i θ̄ B2(x)+ i θ θ̄ s̄(x), (4)

where the secondary fields (R̄µ(x), Rµ(x), s(x), s̄(x))
are fermionic and the other secondary fields
(Sµ(x), B1(x), B̄1(x), B2(x), B̄2(x)) are bosonic in nature.
These secondary fields are determined in terms of the
basic and auxiliary fields of the 4D non-Abelian 1-form
gauge theory by exploiting the mathematical power of
the HC.
Under the celebrated HC, the SU(N) gauge-invariant

kinetic term (− 14 Fµν ·Fµν) of the 4D non-Abelian
gauge theory is required to remain invariant when
we generalize the 4D local non-Abelian theory onto
the (4, 2)-dimensional supermanifold in terms of the
superfields. In other words, the super 2-form F̃ (2) =
d̃Ã(1)+ i Ã(1) ∧ Ã(1) = 1

2! (dZ
M ∧ dZN )F̃MN , defined on

the (4, 2)-dimensional supermanifold with the following
inputs

d̃ = dZM∂M ≡ dxµ ∂µ+ dθ ∂θ + dθ̄ ∂θ̄,
∂M = (∂µ, ∂θ, ∂θ̄),

Ã(1) = dZMAM ≡ dxµ Bµ(x, θ, θ̄)+ dθ F̄(x, θ, θ̄)
+ dθ̄ F(x, θ, θ̄), (5)

is equated to the ordinary 2-form F 2 = dA(1)+
i A(1)∧A(1) in the HC. The latter defines the ordi-
nary curvature tensor Fµν = ∂µAν − ∂νAµ+ i[Aµ, Aν ].
In the above, the super multiplet AM = (Bµ,F , F̄) is
defined on the (4, 2)-dimensional supermanifold which
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is characterized in terms of the superspace coordinates
ZM = (xµ, θ, θ̄)
In the HC, all the Grassmannian components of the

super curvature F̃MN are set equal to zero. This require-
ment leads to the following relationships [1,2]:

Rµ =DµC, R̄µ =DµC̄, B1 =− i2 (C ×C),
s=−(B̄1×C),
Sµ =DµB2+ i(DµC × C̄)≡−DµB̄1− i(C ×DµC̄),
B̄2=− i2 (C̄ × C̄), B̄1+B2=−i(C × C̄),
s̄=−(B2× C̄). (6)

If we make the identifications: B̄1 = B̄, B2 =B, the above
Curci-Ferrari restriction B̄1+B2 =−i(C × C̄) changes to
its well-known form B+ B̄ =−i(C × C̄). Plugging in the
above relationships in the expansions (4), we obtain
the following expressions for the superfields along the
Grassmannian directions of the supermanifold, namely;

B(h)µ (x, θ, θ̄) = Aµ(x)+ θ (DµC̄(x))+ θ̄ (DµC(x))
+ θ θ̄ [i DµB(x)− (DµC ×C)(x)],

F (h)(x, θ, θ̄) = C(x)+ θ (iB̄(x))+ θ̄
[1
2
(C ×C)(x)

]

+ θ θ̄ [−i (B̄×C)(x)],
F̄ (h)(x, θ, θ̄) = C̄(x)+ θ

[1
2
(C̄ × C̄)(x)

]

+ θ̄ (iB(x))+ θ θ̄ [−i (B× C̄)(x)], (7)

which can be expressed in terms the off-shell nilpotent
(s2(a)b = 0) (anti-)BRST symmetry transformations s(a)b
for the non-Abelian 1-form gauge theory as follows2

B(h)µ (x, θ, θ̄) = Aµ(x)+ θ (sabAµ(x))+ θ̄ (sbAµ(x))
+ θ θ̄ (sbsabAµ(x)),

F (h)(x, θ, θ̄) = C(x)+ θ (sabC(x))+ θ̄ (sbC(x))
+ θ θ̄ (sbsabC(x)),

F̄ (h)(x, θ, θ̄) = C̄(x)+ θ (sabC̄(x))+ θ̄ (sbC̄(x))
+ θ θ̄ (sbsabC̄(x)), (8)

where the superscript (h) on the superfields denotes the
expansions of the superfields after the application of the
horizontality condition.
The spacetime component of the super curvature tensor

F̃MN is F̃ (h)µν (x, θ, θ̄) = ∂µB(h)ν − ∂νB(h)µ + i[B(h)µ ,B(h)ν ].
This can be written, using the expansion for B(h)µ (x, θ, θ̄)
in (7), as

F̃ (h)µν (x, θ, θ̄) = Fµν − θ (Fµν × C̄)− θ̄ (Fµν ×C)
+ θθ̄ [(Fµν ×C)× C̄ − i Fµν ×B]. (9)

2The full off-shell nilpotent transformations s(a)b (cf. (16) below)
are absolutely anticommuting on a surface described by the Curci-
Ferrari field equation [B+ B̄+ i(C × C̄) = 0] in the 4D spacetime
manifold.

The above expression does imply clearly that the kinetic
term remains invariant under the horizontality condition

(i.e. − 14 F̃µν(h)(x, θ, θ̄) · F̃ (h)µν (x, θ, θ̄) =− 14Fµν ·Fµν).
Off-shell nilpotent transformations for non-
Abelian 2-form gauge and 1-form auxiliary
fields. – Exploiting (3), it can be checked that
δg(Bµν ·Fηκ) = 0, δg(Kµ ·Fνη) = 0. Thus, we propose
the following gauge-invariant restrictions (GIRs) in terms
of the (super)fields

B̃µν(x, θ, θ̄) · F̃ (h)ηκ (x, θ, θ̄) =Bµν(x) ·Fηκ(x),
K̃µ(x, θ, θ̄) · F̃ (h)νη (x, θ, θ̄) =Kµ(x) ·Fνη(x), (10)

as analogues of the horizontality condition (F̃ (2) = F (2)).
The expansions of the superfields B̃µν(x, θ, θ̄) and
K̃µ(x, θ, θ̄) on the (4, 2)-dimensional supermanifold are

B̃µν(x, θ, θ̄) = Bµν(x)+ θR̄µν(x))+ θ̄Rµν(x)+ iθ θ̄Sµν(x),
K̃µ(x, θ, θ̄) = Kµ(x)+ θP̄µ(x)+ θ̄Pµ(x)+ i θ θ̄ Qµ(x),

(11)

where the secondary fields ( Rµν , R̄µν , Pµ, P̄µ) are fermi-
onic and (Sµν , Qµ) are bosonic in nature. These secondary
fields would be determined by exploiting the above restric-
tions (10) where the HC plays a decisive role, too, in a
subtle manner.
It is straightforward to check that the following

relationships ensue from (10):

Rµν =−(Bµν ×C) R̄µν =−(Bµν × C̄),
Sµν =−(Bµν ×B)− i[(Bµν ×C)× C̄],
Pµ =−(Kµ×C), P̄µ =−(Kµ× C̄),
Qµ =−(Kµ×B)− i [(Kµ×C)× C̄]. (12)

The expansions, that emerge after the application of the
gauge-invariant restrictions, are

B̃(g)µν (x, θ, θ̄) = Bµν(x)− θ [(Bµν× C̄)(x)]− θ̄[(Bµν×C)(x)]
+ θ θ̄ [{(Bµν ×C)× C̄ − i Bµν ×B}(x)],

≡ Bµν(x)+ θ (sabBµν(x))+ θ̄ (sbBµν(x))
+ θ θ̄ (sbsabBµν(x)),

K̃(g)µ (x, θ, θ̄) = Kµ(x)− θ [(Kµ× C̄)(x)]− θ̄ [(Kµ×C)(x)]
+ θ θ̄ [{(Kµ×C)× C̄ − i Kµ×B}(x)],

≡ Kµ(x)+ θ (sabKµ(x))+ θ̄ (sbKµ(x))
+ θ θ̄ (sbsabKµ(x)), (13)

where the superscript (g) denotes the super expansions
obtained after the application of GIRs. From the preced-
ing discussions, it is clear that we have obtained all
the off-shell nilpotent (anti-)BRST transformations for
the basic fields (Bµν , Aµ), auxiliary field (Kµ) and the
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(anti-)ghost fields (C̄)C by exploiting the geometrical
superfield formalism.
From the gauge-invariant restrictions (10) and super

expansions in (9) and (13), it is clear that the topological
term in (1) remains invariant when we generalize the 4D
theory onto the (4, 2)-dimensional supermanifold. As a
consequence, we have the equality

m

4
εµνηκB̃(g)µν (x, θ, θ̄) · F̃ (h)ηκ (x, θ, θ̄)

=
m

4
εµνηκBµν(x) ·Fηκ(x). (14)

It is worth pointing out that the above equality shows
that, ultimately, the l.h.s. of (14) is independent of the
Grassmannian varibales. In an exactly similar fashion, it
can be checked that the following expression for the super

curvature tensor3 (H̃(g,h)µνη (x, θ, θ̄))

H̃(g,h)µνη (x, θ, θ̄) = Hµνη(x)− θ[(Hµνη × C̄)(x)]
− θ̄ [(Hµνη ×C)(x)]
+ θ θ̄[{(Hµνη ×C)× C̄ − iHµνη ×B}(x)]

≡ Hµνη(x)+ θ (sabHµνη(x))
+ θ̄ (sbHµνη(x))

+ θ θ̄ (sbsabHµνη(x)), (15)

implies that 1
12H̃µνη(g,h)(x, θ, θ̄) · H̃(g,h)µνη (x, θ, θ̄) =

1
12H

µνη(x) ·Hµνη(x). In other words, the l.h.s. of this
equality is independent of the Grassmannian variables of
the superspace coordinate ZM = (xµ, θ, θ̄).

Coupled Lagrangian densities and their
invariance. – It can be checked from the action
(corresponding to the starting Lagrangian density
(1)) and the following off-shell nilpotent (anti-)BRST
symmetry transformations

sbAµ = DµC, sbC =
1
2 (C ×C), sbC̄ = iB,

sbB = 0, sbB̄ =−(B̄×C), sbFµν =−(Fµν ×C),
sbHµνη = −(Hµνη ×C), sbBµν =−(Bµν ×C),
sbKµ = −(Kµ×C), sabAµ =DµC̄, sabC̄ = 12 (C̄ × C̄),
sabC = iB̄, sabB̄ = 0, sabB =−(B× C̄),
sabFµν = −(Fµν × C̄), sabHµνη =−(Hµνη × C̄),
sabBµν = −(Bµν × C̄), sabKµ =−(Kµ× C̄), (16)

that the mass dimensions of the fields of the theory,
in natural units �= c= 1, are: [Aµ] = [Bµν ] = [C] = [C̄] =
[M ], [Kµ] = [0], [Fµν ] = [Hµνη] = [B] = [B̄] = [M ]

2.
As a consequence of the above observations, the expres-

sions for the (anti-)BRST-invariant coupled Lagrangian

3The superscripts (g, h), on the compensated super curvature

tensor H̃(g,h)µνη (x, θ, θ̄), denote the incorporation of the constituent

superfields (i.e. B̃(g)µν , K̃(g)µ , F̃(h)µν ), that have been obtained after
the application of the HC and GIRs. The latter are found to be
complementary and consistent with each other.

densities can be written as follows:

LB = −1
4
Fµν ·Fµν + 1

12
Hµνη ·Hµνη + m

4
εµνηκB

µν ·F ηκ

+ sbsab

(1
4
Bµν ·Bµν + i

2
Aµ ·Aµ+C · C̄

)
,

LB̄ = −
1

4
Fµν ·Fµν + 1

12
Hµνη ·Hµνη + m

4
εµνηκB

µν ·F ηκ

− sabsb
(1
4
Bµν ·Bµν + i

2
Aµ ·Aµ+C · C̄

)
. (17)

It should be noted that, in the above parenthesis, we have
chosen the combinations of fields that have, in totality,
mass dimension equal to two and ghost number equal to
zero. As a result, we have the following coupled Lagrangian
densities:

LB = −1
4
Fµν ·Fµν + 1

12
Hµνη ·Hµνη + m

4
εµνηκB

µν ·F ηκ

+B · (∂µAµ)+ 1
2

(
B ·B+ B̄ · B̄

)
− i ∂µC̄ ·DµC,

LB̄ = −
1

4
Fµν ·Fµν + 1

12
Hµνη ·Hµνη + m

4
εµνηκB

µν ·F ηκ

− B̄ · (∂µAµ)+ 1
2

(
B ·B+ B̄ · B̄

)
− iDµC̄ · ∂µC.

(18)

It can be checked that the Lagrangian densities LB and
LB̄ transform under the off-shell nilpotent BRST and anti-
BRST symmetry transformations (cf. (16)) as

sbLB = ∂µ
[
B ·DµC], sabLB̄ =−∂µ

[
B̄ ·DµC̄]

sbLB̄ = −∂µ
[
B̄ · ∂µC]+Dµ

[
B+ B̄+ i(C × C̄)] · ∂µC,

sabLB = ∂µ
[
B · ∂µC̄]−Dµ

[
B+ B̄+ i(C × C̄)] · ∂µC̄.

(19)

Thus, the action corresponding to the above Lagrangian
densities remains invariant.
The 4D coupled Lagrangian densities (17) can be

generalized onto (4, 2)-dimensional supermanifold and can
be expressed in terms of the superfields obtained after
the applications of HC and GIRs. These super Lagrangian
densities, in full blaze of glory, are

L̃B = −1
4
F̃µν(h) · F̃ (h)µν +

1

12
H̃µνη(g,h) · H̃(g,h)µνη

+
m

4
εµνηκB̃µν(g) · F̃ηκ(h)+ ∂

∂θ̄

∂

∂θ

×
(1
4
B̃µν(g) · B̃(g)µν +

i

2
Bµ(h) · B(h)µ + F̃ (h) · F̄ (h)

)
,

L̃B̄ = −
1

4
F̃µν(h) · F̃ (h)µν +

1

12
H̃µνη(g,h) · H̃(g,h)µνη

+
m

4
εµνηκB̃µν(g) · F̃ηκ(h)− ∂

∂θ

∂

∂θ̄

×
(1
4
B̃µν(g) · B̃(g)µν +

i

2
Bµ(h) · B(h)µ + F̃ (h) · F̄ (h)

)
.

(20)
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The BRST and anti-BRST invariance of equation (19)
can be translated into the language of the super
Lagrangian densities (20) and the operation on them by
the Grassmannian partial derivatives as: (∂/∂θ̄)L̃B = 0,
(∂/∂θ̄)L̃B̄ = 0, (∂/∂θ)L̃B = 0, (∂/∂θ)L̃B̄ = 0.
Conclusions. – One of the key observations of our

present investigation is to obtain the compelling theoret-
ical reasons to go beyond the application of the HC in
the context of superfield formulation of purely free p-form
(p= 1, 2, 3, . . .) gauge theories (where there is no interac-
tion with matter fields). As it turns out, the GIRs on the
superfields complement the application of the HC in the
sense that we derive all the off-shell nilpotent (anti-)BRST
symmetry transformations for the present 4D topologi-
cally massive non-Abelian gauge theory. We have exploited
the GIRs in the context of (non-)Abelain 1-form gauge
theory as well [2,3]. The distinct difference, however, is
that, in all such theories [2,3], there is presence of matter
fields. It is worth pointing out that we have tapped only
the usual “scalar” gauge symmetry transformations for
our BRST analysis and have ignored the “vector” gauge
symmetry transformations (cf. the first section, for some
remarks on it). It would be very interesting to exploit both
these gauge symmetries together for the BRST analysis
within the framework of superfield approach to our 4D
topologically massive non-Abelian model.
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