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PACS 76.50.+g – Ferromagnetic, antiferromagnetic, and ferrimagnetic resonances; spin-wave
resonance

PACS 75.40.-s – Critical-point effects, specific heats, short-range order
PACS 76.30.-v – Electron paramagnetic resonance and relaxation

Abstract – The critical properties of the ferromagnet CdCr2Se4 around the paramagnetic-
ferromagnetic phase transition have been investigated. It is found that the 3D-Heisenberg model
is the best one to describe the critical phenomena around the critical point. Critical exponents
β = 0.337± 0.03 and γ = 1.296± 0.109 at TC = 130.48± 0.34 are obtained. In addition, the critical
exponent δ= 4.761± 0.129 is determined separately from the isothermal magnetization at TC .
These critical exponents fulfill the Widom scaling relation δ= 1+ γ/β. Based on these critical
exponents, the magnetization-field-temperature (M -H-T ) data around TC collapses into two
curves obeying the single scaling equationM(H, ε) = εβf±(H/εβ+γ). Although the 3D-Heisenberg
model is the most satisfactory model to describe this system, critical exponents for CdCr2Se4 are
slightly smaller than the theoretical exponents (β = 0.36, γ = 1.39 and δ= 4.8). This indicates that
the exchange interaction J(r) decays slower than r−5 in this system, which can be attributed to
the spin-lattice coupling.

editor’s  choice Copyright c© EPLA, 2010

Introduction. – Although the selenide CdCr2Se4 has
been studied intensively for many decades, it still remains
in hot investigations for lots of fantastic physical charac-
teristics related to ferromagnetic or ferroelastic order and
electronic transport properties [1–7]. This spinel struc-
tural compound belongs to the cubic cell structure with
space group Fd3m [8]. The Cr ions occupy the octahe-
dral sites in the spinel B sublattice, and Cd occupies the
tetrahedrally coordinated A sublattice. Its valence config-
uration is Cd2+Cr3+2 Se

2−
4 with only Cr

3+ (3d3) possessing
the magnetic moments S = 3/2 [7,8]. It is an n-type semi-
conductor in transport properties, which can be changed
into a p-type one by selenium vacancies [9].
The magnetic properties of CdCr2Se4 have attracted

much considerable attention. The magnetization experi-
ences an abrupt paramagnetic-ferromagnetic (PM-FM)
phase transition at TC ∼ 130K upon cooling. The large
paramagnetic Curie-Weiss temperature TCW indicates

(a)E-mail: zhanglei@hmfl.ac.cn

strong ferromagnetic exchange interactions. In the ferro-
magneitc ordered phase, the saturation magnetization was
reported to be in the range of 5.4–5.98µB/mol, which is
close to the value expected for the magnetic moments
carried by Cr3+ ions [1,7,10,11]. In fact, the magnetic
ordered state in the spinel AB2X4 is determined by the
competition between the nearest-neighbor ferromagneitc
superexchange B-X-B and high-order-neighbor antiferro-
magnetic B-X-A-B-X interactions, while the ferromagnetic
superexchange is dominant in the CdCr2Se4 system [5]. As
a result, the mechanism of the magnetic phase transition
of this system is considered as the 90◦ Cr3+-Se2−-Cr3+

superexchange, which is in accordance with the Kanamori-
Goodenough rules [12,13].
On the other hand, CdCr2Se4 is very close to the

ideal isotopic Heisenberg ferromagnet required to test
various theories of the critical phenomena in magnetic
materials [7]. To better understand the Heisenberg
ferromagnetism and the basic physical mechanisms, it is
important to fully understand the PM-FM transition at
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Fig. 1: (Color online) (a) The temperature dependence of magnetization under H = 100Oe and 10000 Oe (the inset plots dM/dT
vs. T ); (b) the isothermal magnetization around TC for CdCr2Se4 (the inset is the isothermal magnetization at 4K); (c) Arrott
plot: Isotherms of M2 vs. H/M at temperatures around TC for CdCr2Se4.

the critical point. Therefore, a detailed study of the critical
exponents associated with the FM transition is necessary.
In this work, four kinds of different theoretical models, the
mean-field (β = 0.5), the 3D-Heisenberg (β = 0.365), the
3D-Ising (β = 0.325) and the tricritical mean-field
(β = 0.25) model, were tried to explain the critical
properties in view of the varying critical exponent β from
0.1 to 0.5 [14,15]. It is found that the selenide CdCr2Se4
is in best accordance with the 3D-Heisenberg model.
Furthermore, reliable critical exponents β, γ and δ were
obtained. These exponents are slightly smaller than the
theoretical values, which can be explained by the decay
distance of the exchange interaction.

Experiment. – A polycrystaline sample of CdCr2Se4
was prepared by the solid-state reaction method. High-
purity powders of cadmium, chromium, selenium were
mixed according to the stoichiometric ratio, and sealed
into an evacuated quartz tube and slowly heated to 850 ◦C.
Then the powder was pressed into pellets after sintering at
850 ◦C for 7 days. Finally, the pellets were sealed into an
evacuated quartz tube and sintered at 850 ◦C for another
2 days. The powder X-ray diffraction (XRD) proved
that the sample is single phase. The magnetic properties
were measured using a commercial SQUID magnetometer
(Quantum Design MPMS). The sample was processed
to sphere shape to decrease the demagnetizating field.

The electronic paramagnetic resonance (EPR) measure-
ment of the powder sample was performed using a Bruker
EMX plus model spectrometer operating at the X-band
frequencies (9.4GHz) at selected temperatures.

Results and discussion. – The temperature depen-
dence of magnetization for CdCr2Se4 under a magnetic
field of 100 Oe and 10000 Oe is shown in fig. 1(a). An
abrupt PM-FM phase transition happens at TC . The Curie
temperature TC is defined as the temperature correspond-
ing to the extreme of dM/dT vs. T , as shown in the
inset of fig. 1(a). It can be seen that TC = 130K under
H = 100Oe, while TC = 138K under H = 10000Oe, which
indicates that TC is dependent on the external field H. In
fact, TC under zero field is close to that under low field
(i.e., TC |H=0 ∼ 130K). However, accurate TC |H=0 values
should be determined by the analysis of the critical expo-
nents. Thus, the isothermal magnetization around TC is
measured for the analysis of the critical properties, as
gives in fig. 1(b). The compound CdCr2Se4 is a soft ferro-
magnet with no coercivity force, as displayed in the inset of
fig. 1(b). So, there is no magnetic hysteresis in the isother-
mal magnetization.
Generally, the critical exponents and critical temper-

ature can be easily determined by analyzing the Arrott
plot at temperatures around TC [16,17]. As in the Landau
theory of phase transition, the Gibbs free energy G can be
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Fig. 2: (Color online) Modified Arrott plot: isotherms of M1/β vs. (H/M)1/γ with (a) 3D-Heisenberg model (β = 0.365,
γ = 1.336), (b) 3D-Ising model (β = 0.325, γ = 1.24) and (c) tricritical mean-field model (β = 0.25, γ = 1.0); (d) relative slope
(RS) as a function of temperature defined as RS = S(T )/S(TC = 130K).

expressed in terms of the order parameter M as

G(T,M) =G0+ aM
2+ bM4−MH. (1)

The coefficients a and b are temperature-dependent [18].
For the condition of equilibrium (∂G/∂M = 0, i.e., energy
minimization), the magnetic equation of state transforms
to

H/M = 2a+4bM2. (2)

Thus, the M2 vs. H/M should appear as straight lines in
the high-field range in the Arrott plot. The intercept ofM2

as a function ofH/M on theH/M axis is negative/positive
below/above TC . The line of M

2 vs. H/M at TC should
cross the origin. According to the criterion proposed by
Banerjee [19], the order of the magnetic transition can
be determined from the slope of the straight line: the
positive slope corresponding to the second-order transition
while the negative slope to the first-order one. Figure 1(c)
shows the Arrott plot of M2 vs. H/M for CdCr2Se4
around TC . The positive slope of theM

2 vs. H/M relation
indicates that the PM-FM phase transition is a second-
ordered one. However, all curves in the Arrott plot are
nonlinear and show an upward curvature even in the
high-field region, which indicates that β = 0.5 and γ = 0.1
are not satisfied according to the Arrott-Noakes equation
of state (H/M)1/γ = (T −TC)/TC +(M/M1)1/β [20]. In
other words, the Landau phase transition theory or the
mean-field theory with β = 0.5 and γ = 0.1 is not valid for

CdCr2Se4. Thus, the modified Arrott plots are employed
to obtain the correct β and γ.
As is well known, the second-order magnetic phase tran-

sition can be studied in detail through a series of critical
exponents. According to the scaling hypothesis, the math-
ematic definitions of the exponents from magnetization
can be described as [21–23]

MS(T ) =M0|ε|β , ε < 0, T < TC , (3)

χ0(T )
−1 = (h0/M0)εγ , ε > 0, T > TC , (4)

M =DH1/δ, ε= 0, T = TC , (5)

where ε is the reduced temperature (T −TC)/TC ; M0,
h0 and D are the critical amplitudes. β (associated with
the spontaneous magnetization MS), γ (associated with
the initial magnetic susceptibility χ0) and δ (associated
with the critical isothermal magnetization at TC) are the
critical exponents.
In the high-field region, the effects of charge, lattice and

orbital degrees of freedom are suppressed in a ferromagnet,
and the order parameter can be identified with the macro-
scopic magnetization [23]. Three kinds of trial exponents of
the 3D-Heisenberg model (β = 0.365, γ = 1.336), the 3D-
Ising model (β = 0.325, γ = 1.24) and the tricritical mean-
field model (β = 0.25, γ = 1.0) are used to make a modified
Arrott plot, as shown in fig. 2(a)–(c). All the three models
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Fig. 3: (Color online) (a) The spontaneous magnetization MS(T, 0) (left, open circles) and the inverse initial susceptibility
χ−10 (T ) (right, open circles) as a function of temperature along with the fitting curves based on the power laws (solid curves).
(b) Kouvel-Fisher plot for the spontaneous magnetization MS(T ) (left) and the inverse initial susceptibility χ

−1
0 (T ) (solid lines

are fitted). (c) IsothermalM vs. H plot for CdCr2Se4 at TC = 130K (the inset shows the same plot in log-log scale and the solid
line is the linear fit following eq. (3)). (d) Scaling plot below and above TC using β and γ determined from the Kouvel-Fisher
method (only several typical curves are shown).

yield quasistraight lines in the high-field region. However,
the tricritical mean-field model should be excluded firstly
because these straight lines are not parallel to each other.
It is difficult to determine which one is better between the
3D-Heisenberg and the 3D-Ising model from fig. 2(a) and
fig. 2(b). Thus, the relative slope (RS) is defined as RS =
S(T )/S(TC = 130K) in order to distinguish which model
is better to describe this system. The RS of the most satis-
factory model should be the one close to 1 mostly for the
reason that the modified Arrott plots are a series of paral-
lel lines [23]. The RS vs. T for the three models are shown
in fig. 2(d), which displays that the 3D-Heisenberg model
is the best one for CdCr2Se4. Therefore, the linear extra-
polation from the high-field region to the intercepts with
the axes H/M1/γ and M1/β yields the reliable values
of the inverse initial susceptibility χ−10 (T, 0) and of the
spontaneous magnetization MS(T, 0) respectively, which
are plotted as a function of temperature in fig. 3(a) as
open circles. The experimental data can be fitted accord-
ing to eq. (1) and eq. (2), which gives the new critical
exponents β = 0.358± 0.039 with TC = 130.53± 0.28 and
γ = 1.342± 0.158 with TC = 130.62± 0.65, respectively.
The accurate transition temperature TC |H=0 ≈ 130K is
obtained, which is consistent with the speculation above.

On the other hand, these critical exponents can be
also determined more accurately according to the Kouvel-
Fisher (KF) method [24]:

MS(T )

dMS(T )/dT
=
T −TC
β
, (6)

χ−10 (T )
dχ−10 (T )/dT

=
T −TC
γ
. (7)

According to eq. (6) and eq. (7),MS(T )/dMS(T )/dT and
χ−10 (T )/dχ

−1
0 (T )/dT are plotted as linear functions of

temperature, and their slopes are 1/β and 1/γ, respec-
tively. MS(T )/[dMS(T )/dT ] and χ

−1
0 (T )/[dχ

−1
0 (T )/dT ]

vs. T are plotted in fig. 3(b). The new exponents are
obtained as β = 0.337± 0.033 with TC = 130.48± 0.34 and
γ = 1.296± 0.109 with TC = 130.63± 0.48, which agrees
well with the theoretical prediction γ = 1.2–1.3 [25]. These
exponents obtained from the KF method are inconsistent
with that obtained from the modified Arrott plot of the
3D-Heisenberg model.
The third critical exponent δ can be determined accord-

ing to eq. (3). As discussed above, the critical point

57001-p4
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TC ∼ 130K. The isothermal magnetization at TC = 130K
is given in fig. 3(c), and the inset of fig. 3(c) plots the log-
log scale. The ln(M)− ln(H) relation yields a straight line
in the higher-field range (H > 1T), and the slope is 1/δ.
Then, the third exponent δ= 4.761± 0.129 is obtained.
According to the statistical theory, these three critical
exponents obey the Widom scaling relation [26]:

δ= 1+
γ

β
. (8)

Thus, we have δ= 4.749 from fig. 3(a) and δ= 4.846 from
fig. 3(b), both of which are close to the one obtained from
the isothermal magnetization at TC . This proves that the
critical exponents obtained here are reliable.
As a further confirmation, the critical exponents at

TC are tested according to the prediction of the scaling
hypothesis. In the critical region, the magnetic equation
can be written as [27]

M(H, ε) = εβf±(H/εβ+γ), (9)

where f± are regular functions with f+ for T > TC , while
we have f− for T < TC . Equation (9) indicates that
M(H, ε)ε−β vs. Hε−(β+γ) forms two universal curves for
T > TC and T < TC , respectively. Thus, the isothermal
magnetization around TC is plotted as this prediction of
the scaling hypothesis in fig. 3(d). The inset of fig. 3(d)
is the log-log scale. All experiment data collapse into two
different curves. This proves that eq. (9) is obeyed over
the entire range of the nomalized variables, which further
indicates the reliability of the obtained critical exponents.
The critical exponents obtained here is mostly close to

the 3D-Heisenberg model, which indicates that CdCr2Se4
is a 3D-Heisenberg ferromagnet. As for the Heisenberg
model, the exchange integral is strongly dependent on
the interaction distance. In fact, the CdCr2Se4 forms a
ferromagnet via the 90◦ Cr-Se-Cr superexchange [12]. On
the other hand, the universality class of the magnetic
phase transition depends on the range of the exchange
interaction J(r) in homogeneous magnets [28–30]. The
long-range attractive interactions decay as [29]

J(r)∼ 1/r−(d+σ), (10)

where d is the spatial dimension, σ > 0. For a three-
dimensional material (d= 3), there holds the relation
J(r)∼ r−(3+σ) with 3/2� σ� 2. When σ= 2, the
Heisenberg exponents (β = 0.365, γ = 1.336 and δ = 4.8)
are valid for the three-dimensional isotropic ferromagnet,
i.e., J(r) decreases faster than r−5. When σ= 3/2, the
mean-field exponents (β = 0.5, γ = 1.0 and δ= 3.0) are
valid, which indicates that J(r) decreases slower than
r−4.5. All exponents obtained here are slightly smaller
than the theoretical values of the 3D-Heisenberg model,
which confirms that J(r) decays slower than r−5 for
CdCr2Se4.
What is the reason that causes the deviation of

these critical exponents? In order to further understand

Fig. 4: (Color online) The peak-to-peak linewidth ∆Hpp of
the ESR spectra (left axis) and the inverse M−1 (right axis)
vs. T ; the inset plots three typical ESR spectra at different
temperatures for comparison.

the interaction at the critical point, the peak-to-peak
linewidth ∆Hpp of the ESR spectra and the inverse
M−1 vs. T are shown in fig. 4. Obviously, changes happen
to the ESR spectrum with temperature cooling (see the
inset of fig. 4). ∆Hpp decreases linearly with temperature
cooling above Tmin ∼ 155K, while it increases rapidly with
temperature cooling below Tmin, which indicates a strong
spin interaction with another environment [31]. The
M−1−T deviates the linear relation below T ∗ ∼ 210K,
while the inflexion point locates at TC ∼ 130K. These
results indicate the appearance of a strong spin-lattice
coupling near TC , which is confirmed by the study of the
Raman spectra [32]. This spin-lattice coupling has been
also reported in other similar systems [33–35]. The spin-
lattice coupling starts at T ∗, leading to the deviation from
the linear relation ofM−1−T . With temperature cooling,
the spin-lattice coupling is enhanced rapidly, causing the
rapid increase of ∆Hpp. Finally, the long-range super-
exchange ferromagnetic coupling forms at TC . In fact,
the spin-lattice is so strong in the ferromagnetic region
that it causes J(r) to decay slower than r−5. Therefore,
the exchange interaction is affected by the spin-lattice
coupling, which leads to the deviation of the critical
exponents.

Conclusion. – In conclusion, the critical phenomena
of the superexchange ferromagnet CdCr2Se4 have
been comprehensively studied by the isothermal
dc-magnetization around the Curie point TC . The
3D-Heisenberg model is the best to describe the critical
properties. The reliable critical exponents (TC , β, γ and δ)
are obtained based on various research techniques includ-
ing modified Arrott plot, Kouvel-Fisher method, and
critical isotherm analysis. With these critical exponents
thus obtained, the magnetization-field-temperature
(M -H-T ) data below and above TC collapse into two
different curves obeying the single scaling equation.
Besides, these exponents indicate that the exchange
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interaction J(r) decays slower than r−5 in this system,
which can be attributed to the spin-lattice coupling.
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