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Abstract – Thermodynamics of chemical elements, based on the two-component electron-nuclear
plasma model, shows that the critical parameters for the liquid-vapor transition are the quantum
values for which the classical limit is absent. The general representations for the critical parameters
are found.
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For all substances in the vicinity of the critical points of
the liquid-vapor transition, the inter-particle interaction is
strong. Therefore, theoretical description of critical points
seems to be a very complicated problem. Numerical model-
ing allows approximate calculation of the critical para-
meters for a known inter-particle interaction potential.
However, the use of pair short-range potentials acceptable
for the matter of low and moderate density (in gaseous
state) cannot be justified for the region of the critical-point
parameters. This means that usual numerical calculations
of these parameters with the model pair potentials (see,
e.g., [1,2]) have empirical nature.
To describe the critical parameters (for concreteness,

only the chemical elements are discussed below, although
the main statements are universal), we propose to use
the pure Coulomb interaction between the electrons and
nuclei [3–7]. This basic model, i.e., the two-component
homogeneous and isotropic electron-nuclei Coulomb
system (CS) has been recently successfully applied to
study the properties of dielectric permittivity [7,8]. It was
also shown that the critical point of the two-component
CS is related to the limiting behavior of the generalized
screening length in the electron-nuclear plasma [9].
In this letter, we focus the attention on the fact

that in two-component electron-nuclear Coulomb plasma,
when the thermodynamic parameters tend to critical,
the sole parameter with energy dimension (except the
parameters containing the critical ones) is the atomic
energy unit (Hartree energy)me4/�2 � 27.21 eV. It should
be emphasized that even in a pure Coulomb system for
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thermodynamic functions there are other energy scales
—temperature T or e2n1/3. Therefore, restriction of the
energy scales is the specific property of critical points.
From this reasoning we obtain immediately the exact
relation for the critical temperature Tc (in energy units)

Tc =
me4

�2
τ
(
z,
m

M
,σ
)
. (1)

Here m, e are the electron mass and charge, respectively,
M and z are the mass and charge number of the element
under consideration. The value σ=± depends on the
nucleus spin J (+ for the Fermi statistics, J is a semi-
whole number; − for the Bose statistics, J is a whole
number). The variables m/M and σ describe the differ-
ence of the critical parameters of isotopes. Therefore, the
function τ(z, m

M
, σ), in general, is the unknown dimension-

less function of three dimensionless parameters: z (nuclear
charge number), the mass ratio m/M and the variable σ.
From physical reasons, we can assume that dependence
of the critical temperature on the small parameter m/M
(isotopic effect) can be neglected with good accuracy for
z� 1. Then the problem reduces to the determination of
only the function τ(z, σ).
At the same time, for z � 1 the mass dependence in the

function τ is important (e.g., for the hydrogen isotopes
Tc(H) = 33.24K, Tc(D) = 38.35K and Tc(T) = 43.7K [10],
see fig. 1).
Since hydrogen (H) and tritium (T) both have σ=+,

these data for the critical temperatures are the evident
manifestation of the isotopic effect. At the same time,
for hydrogen and deuterium (as well as for He4 and
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Fig. 1: Critical temperatures Tc(z) for the isotopes of
hydrogen.

He3, with the critical temperatures Tc(He
4) = 5.20K and

Tc(He
3) = 3.34K) the temperatures Tc can be different due

to distinction of the both values M and σ.
For a large z, when the isotopic mass difference is small,

the problem reduces to the determination of only the
function τ(z, σ)

Tc � me
4

�2
τ(z, σ). (2)

For the critical pressure, on the same basis as above one
can write

Pc =
me4

a30�
2
π
(
z,
m

M
,σ
)
� me

4

a30�
2
π(z, σ), (3)

where a0 = �
2/me2 is the Bohr radius. At last, the critical

density can be written in the form

Nc =
1

a30
n
(
z,
m

M
,σ
)
� 1
a30
n(z, σ). (4)

Usually the critical parameters are measured for chem-
ical elements in normal states for nuclei, when σ is a
fixed function of z: σ= σ(z). The introduced dimen-
sionless functions τ(z, σ), π(z, σ) and n(z, σ) under the
condition z� 1 depend in this case only on the nucleus
charge number z.
It is useful to mention, that for practical purposes,

and taking into account the isotopic mass dependence
of the critical parameters for small z, a more convenient
(but also exact, since the functions τ(z, σ), π(z, σ) and
n(z, σ) can depend on fundamental constants, e.g.,m/mp)
representation of the critical temperatures can be written
in the form

Tc =
mp e

4

�2
τ̃
(
z,
mp

M
,σ
)
, (5)

where mp is the proton mass and we introduced the
appropriate energy unit mp e

4/�2 = 5.45 · 10−4Hartree�
172.1K. This value is more appropriate to the “typical”
critical temperatures than the energy unit Hartree since

Fig. 2: Critical temperatures Tc(z) for alkali metals, noble gases
and halogens.

the critical points of elements are distributed in the inter-
val of temperatures � (1–2 · 104)K [10]. The dependence
on mp/M ∼ 1/z (rather than m/M) gives the real para-
meter for influence of the isotopic mass difference on the
critical temperatures. The similar “renormalization” can
be also applied to the critical parameters Pc and Nc.
Consideration of the experimental data for the critical

points for the liquid-vapor transition shows that the func-
tion τ(z) is a rapidly varying function of the variable z
(e.g., for Ar (z = 18) and K (z = 19) the critical temper-
atures are 150.69K and 2.18 · 103K, respectively). These
rapid changes are demonstrated in fig. 2, where the criti-
cal points for three groups of elements (alkali metals, noble
gases and halogens) are drawn.
One can assume that these rapid “irregular” changes

in the function τ(z) have the same physical nature as
spasmodic changes in the first ionization potential I(z)
and valency v(z) which are conditioned by sequential fill-
ing of electron shells in the atomic model of matter. The
model, based on these variables has been described in
the review paper [11]. The model of quasiatoms with
overlapping valent electron shells has been considered
and successfully applied to find the approximate effective
van-der-Waals–type equation for plasma-like systems. On
this basis the critical points of certain metals have been
approximately found by use as the fitting parameters the
ionization potential I and valency z0. However, it should
be emphasized that the ionization potential and valency
are the approximate characteristics for systems with a
strong Coulomb interaction. Therefore, the model and
assumptions in [11] have a limited and approximate char-
acter. Even for alkali metals the scaling rule Tc ∼ I1 [11],
where I1(z) is the first ionization potential of the atom
in a rarefied gas, is fulfilled with an accuracy of only 20
percent. For other groups of elements, when the model of
the overlapping quasiatoms is not applicable, this simi-
larity does not exist even approximately. For example, the
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critical temperatures for noble gases and halogens increase
with z (fig. 2), although the ionization potentials I1(z) are
the decreasing function of z [10]. The interesting observa-
tion is that, according to the experimental data [10], these
elements are molecular near the critical points, except-
ing iodine, which is in the atomic state. Nevertheless,
this crucial change of structure has no evident influence
on the regular increase of the critical temperatures with
increasing nuclear charge z.
As is shown in the present letter, the exact values of

critical parameters for all elements should be constructed
on the variables me4/h2 (or mpe

4/h2), nuclear charge z
and σ.
In one group of the periodic Mendeleev Table of chemi-

cal elements, the characteristic functions τ(z), π(z) and
n(z) are smooth functions of the variable z. Figure 2
demonstrates the smooth z-dependence of critical temper-
atures Tc(z) for each of the groups: alkali metals, noble
gases and halogens.
The representations (1), (3), (4), (5) are exact, although,

in such a general form they cannot provide prediction
of the critical points of some elements on the basis of
the known critical points of other elements. For such
predictions, methods for calculating or physical models of
the functions τ(z), π(z) n(z) should be developed.
For more complicated systems (substances), which

contain a few species of nuclei, relations for the critical
parameters (1), (3) and (4) can be generalized. As is
known for, e.g., a two-component system (which has
two different types of nuclei with the charges z1 and z2)
the critical points for the case of two coexisting phases
can place on some curve in the space P, T, x, where
concentration x=N1/(N1+N2). Here N1 and N2 are
the quantities of the nuclei with the charges z1 and z2
respectively. For this case the dimensionless functions τ ,
π contain the additional variable x.
Useful information can be obtained already within the

existing model approximations. As an example, let us
consider the van der Waals theory. As is known the relation

Pc =
3NcTc
8
, (6)

follows from this theory.
Although relation (6) is found from the classical and

empirical approach, it can be used within the range of its
practical applicability to obtain the approximate relation
between the functions τ(z), π(z) n(z) for z� 1. The
van der Waals model leads to the relation

π(z) =
3

8
n(z)τ(z). (7)

Similarly, the modern model theories of the equation
of state and critical points of matter (see, e.g., [12]
and references therein) can be used to approximate the
unknown functions τ(z), π(z) n(z) according to the known
experimental data and the periodic Mendeleev table of
chemical elements. However, this is not the problem of
this letter.

The theory and conclusions of this letter are based on
the assumption of gravity-independent critical parameters
for CS (influence of an external gravitational field is
negligible). This scenario is based on a small value of
gravitational force in comparison with the forces of electro-
magnetic nature. The numerical calculations [13–15] of the
state diagram as well as theoretical argumentation [16]
confirm, in general, this approach.
As follows from the basic relations (1)–(5) the para-

meters of the critical points are the quantum expressions
which have not a classical limit or classical analogue. In
this connection, the general question, outside the frame-
works of this letter, arises about the classification of the
physical characteristics of the Coulomb matter into those
having a classical limit and those that do not.
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