This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy. Close this notification

Single-polymer adsorption in shear: Flattening vs. hydrodynamic lift and surface potential corrugation effects

, , , and

Published 30 November 2010 Europhysics Letters Association
, , Citation A. Serr et al 2010 EPL 92 38002 DOI 10.1209/0295-5075/92/38002

0295-5075/92/3/38002

Abstract

The adsorption of a single polymer to a flat surface in shear is investigated using Brownian hydrodynamics simulations and scaling arguments. Competing effects are disentangled: in the absence of hydrodynamic interactions, shear drag flattens the chain and thus enhances adsorption. Hydrodynamic lift on the other hand gives rise to long-ranged repulsion from the surface which preempts the surface-adsorbed state via a discontinuous desorption transition, in agreement with theoretical arguments. Chain flattening is dominated by hydrodynamic lift, so overall, shear flow weakens the adsorption of flexible polymers. Surface friction due to small-wavelength surface potential corrugations is argued to weaken the surface attraction as well.

Export citation and abstract BibTeX RIS

Access this article

The computer you are using is not registered by an institution with a subscription to this article. Please choose one of the options below.

Login

IOPscience login

Find out more about journal subscriptions at your site.

Purchase from

Article Galaxy
CCC RightFind

Purchase this article from our trusted document delivery partners.

Make a recommendation

To gain access to this content, please complete the Recommendation Form and we will follow up with your librarian or Institution on your behalf.

For corporate researchers we can also follow up directly with your R&D manager, or the information management contact at your company. Institutional subscribers have access to the current volume, plus a 10-year back file (where available).

10.1209/0295-5075/92/38002