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Abstract – Cyclotron braid subgroups are defined in order to identify the topological origin
of Laughlin correlations in 2D Hall systems. Flux tubes and vortices for composite fermion
constructions are explained in terms of cyclotron braids. The odd and even denominator fractional
lowest Landau level fillings are discussed.
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Introduction. – The essence of 2D Hall system
physics involves Laughlin correlations (LCs), which are
expressed by the famous Laughlin wave function (LF) [1].
An analysis of the Coulomb interaction in Haldane
pseudopotential terms [2–4] indicates that the LF exactly
describes the ground state for N charged 2D particles at
the fractional Landau level (LL) filling 1/q, q odd integer,
if one neglects the long-distance part of the Coulomb
interaction expressed by a projection on the relative
angular momenta of particle pairs for values greater than
q− 2. An effective model of composite fermions (CFs) [5]
was next formulated in terms of auxiliary flux tubes
attached to particles in order to produce the required
statistical phase by employing the Aharonow-Bohm
phase shift. The competitive construction of CFs utilizes
so-called vortices [6,7], collective fluid-like objects that are
pinned to bare fermions and reproducing LCs [6]. Both
types of composite particles, with vortices or with flux
tubes, are phenomenological in nature, thus the question
arises as to what is a more fundamental reason for LCs in
2D charged systems. It is commonly acknowledged [8–10]
that the source of exotic LCs is of a 2D peculiar topology
type. To match the topological properties of quantum
systems, quantization by the Feynman path integral
method is particularly convenient [8,9]. In the present
letter we revisit it to recover LCs by employing properties
of the underlying cyclotron braid picture [11,12] without
a phenomenological modeling of CFs.

Too-short cyclotron trajectories at strong
magnetic fields. – One-dimensional unitary represen-
tations (1DURs) of the full braid group [9,13–15] (π1
homotopy group of undistinguishable N -particle config-
uration space [13]), define weights for the path integral
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summation over trajectories [8,9]. If the trajectories fall
into separated homotopy classes that are distinguished
by non-equivalent closed loops attached to an open
trajectory λa,b (linking points a and b in the configuration
space), then an additional unitary factor (the weight of
the particular trajectory class) should be included [8,9] in
the path integral: Ia→b =

∑

l∈π1
eiαl
∫
dλle

iS[λl(a,b)], where

π1 stands for the full braid group. The factors e
iαl form a

1DUR of the full braid group and distinct representations
correspond to distinct types of quantum particles. For
the permutation group SN , which is the full braid group
for N particles in Rn, n� 3, there exist only two 1DURs:
σi→ eiπ or σi→ ei0, (σi is the interchange of the i-th
and (i+1)-th particles) corresponding to fermions and
bosons, respectively. For N particles in R2 the braid
group is substantially richer than SN and has an infinite
number of 1DURs [9,15], defined for the group generators
as: σi→ eiθ, i= 1, . . . , N − 1, θ ∈ (−π, π], where each θ
corresponds to a different type of anyons [1,8,9] (Abelian,
as the 1DUR elements commute). The closed loops
from the full braid group describe exchanges of identical
particles, thus, their 1DURs indicate the statistics of the
particles. Because 1DURs are periodic with a period of
2π, the statistical distinguishing of CFs linked with LCs
is precluded due to the fact that they require a phase
shift of pπ, p= 3, 5 . . . . If it is impossible to associate CFs
with the 1DURs of the full braid group, we propose [11]
to associate them with appropriately constructed braid
subgroups instead of the full braid group and in this way
to distinguish CFs from fermions.
The full braid group contains all accessible closed

multi-particle classical trajectories —braids (with initial
and final orderings of particles that may differ by
permutation). We base our analysis on the observation
that inclusion of a magnetic field substantially changes
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i

Fig. 1: The generator σi of the full braid group and the corre-
sponding relative trajectory of the i-th and (i+1)-th particles
exchange (a); the generator of the cyclotron braid subgroup,

b
(p)
i = σ

p
i (in the figure, p= 3), corresponds to additional

p−1
2

loops when the i-th particle interchanges with the (i+1)-th
one (2R0 is the inter-particle separation) (b).

these trajectories —a classical cyclotron motion confines
a variety of accessible braids. When the separation of
particles is greater than twice the cyclotron radius, which
occurs at fractional lowest LL fillings, the exchanges
of particles along single-loop cyclotron trajectories are
precluded, because the cyclotron orbits are too short
for interchanges. Particle interchanges, however, are
necessary for defining the statistics and in order to allow
exchanges again, the cyclotron radius must somehow
be enhanced. An enhancement could be achieved by
either lowering the effective magnetic field or lowering
the effective particle charge. These two possibilities lead
to the two phenomenological concepts of CFs —with
the lowered field in Jain’s construction [5] and with the
screened charge in Read’s construction of vortices [6].
Both of these constructions seem to have nothing in
common with braid groups, but actually both of these
phenomenological tricks correspond to the same, more
basic and natural concept, of restricting the braids by
excluding inaccessible trajectories [11,12]. We argue
that at sufficiently high magnetic fields in 2D charged
N -particle systems, multi-loop braids allow for the
enlargement of cyclotron orbits, thus restoring particle
exchanges in a natural way [12]. These multi-loop braids
form a subgroup of the full braid group and, in the
presence of strong magnetic field, the summation in the
Feynman propagator will be thus confined to the elements
of this subgroup (its semigroup, for fixed magnetic field
orientation, however, with the same 1DURs as of the
subgroup).

Cyclotron braid subgroups —the response to
too short trajectories. – More precisely, we associate
composite particles and LCs with the 1DURs of cyclotron
braid subgroups that are generated by the following gener-

ators: b
(p)
i = σ

p
i , (p= 3, 5 . . .), i= 1, . . . , N − 1, where each

p corresponds to a different type of cyclotron braid
subgroup (and to a different type of corresponding
composite particles), and σi are the generators of the

full braid group. The group element b
(p)
i represents the

interchanges of the i-th and (i+1)-th particles with
p−1
2 loops, which is clear by virtue of the definition of

Rc

ba

dc

Rc

2Rc

2Rc

Fig. 2: Half of the individual particle cyclotron trajectories of
the i-th and (i+1)-th particles ((a), (b)) and the corresponding
relative trajectories ((c), (d)) for interchanges of the i-th and
(i+1)-th 2D particles under a strong magnetic field, for ν = 1
(left) and for ν = 1

3
(right), respectively (3D for better visual-

ization).

the single interchange σi (cf. fig. 1). The 1DURs of the
full group confined to the cyclotron subgroup do not
depend on i and yield the cyclotron subgroup 1DURs:

b
(p)
i → eipα, i= 1, . . . , N − 1, where p is an odd integer and
α∈ (−π, π]. These 1DURs, enumerated by the pairs (p, α),
describe composite anyons (CFs, for α= π). Thus in order
to distinguish various types of composite particles one has
to consider (p, α) 1DURs of cyclotron braid subgroups.
The N -particle wave function acquires an appropriate

phase shift due to particle interchanges, because in agree-
ment with the general rules of quantization [10,15], the
wave function must transform according to the 1DUR
of an appropriate element of the braid group when the
particles traverse, in classical terms, a closed loop in the
configuration space corresponding to this particular braid
element. In this manner, the Aharonov-Bohm phase of
Jain’s fictitious fluxes is replaced by additional loops (each
loop adds 2π to the total phase shift, if one considers
1DUR with α= π related to CFs, cf. fig. 1 (right-hand
side)). Let us emphasize that the real particles do not
traverse the braid trajectories, as quantum particles do
not have any trajectories. But exchanges of coordinates of
the N -particle wave function can be represented by braid
group elements, in 2D —not permutation only [9,10,15].

Hence, for the braid cyclotron subgroup generated by b
(p)
i ,

i= 1, . . . , N − 1, we obtain the statistical phase shifts pπ
for the CFs (i.e., for α= π), as required by the LCs, with-
out the need to model them with flux tubes or vortices.
Each additional loop of a relative trajectory for the

particle pair interchange (as defined by the generators

b
(p)
i ) reproduces an additional loop in the individual
cyclotron trajectories for both interchanging particles
—cf. fig. 2. The cyclotron trajectories are repeated in
the relative trajectory (c, d) with twice the radius of
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the individual particle trajectories (a, b). In quantum
language, with regards to classical multi-loop cyclotron
trajectories, one can conclude only on the number, BS

N
/hc
e
,

of flux quanta per single particle in the system, which
for the filling 1

p
is p, i.e., the same as the number of

cyclotron loops. Thus, a simple rule could be formulated:
an additional loop of a cyclotron braid corresponding to
particle interchange, results in two additional flux quanta
piercing the individual particle cyclotron trajectories.
This rule follows immediately from the definition of the
cyclotron trajectory, which must be a closed individual
particle trajectory related to a double interchange of
the particle pair. In this way, the cyclotron trajectories
of both interchanging particles are closed, just like the
closed relative trajectory for the double interchange. If
the interchange is simple, i.e., without any additional
loops, the corresponding individual particle cyclotron
trajectories are also simple, i.e., single-looped. However,
when the interchange of particles is multi-looped, as
associated with the p-type cyclotron subgroup (p > 1),
the double interchange relative trajectory has 2p−12 +1= p
closed loops, and the individual cyclotron trajectories are
also multi-looped, with p loops [12].
It is important to emphasize the difference between the

turns of a 3D winding (e.g., of a wire) and multi-loop 2D
cyclotron trajectories. In the latter case, 2D multi-loop
trajectories cannot enhance the total magnetic field flux
BS piercing the system, so all loops must share the same
total flux. In the former case, each turn of a winding adds
a new portion of the flux, just as a new turn adds a new
surface, which is, however, not the case in 2D.
The additional loops in 2D take away the flux quanta

simultaneously diminishing the field; this gives an explana-
tion for Jain’s auxiliary fluxes screening the external field
B. CFs are actually not compositions of particles with flux
tubes, though the original name can be still used. More-
over, one can use a similar name, “composite anyons”,
for particles associated with fractional 1DURs (i.e., with
fractional α) of the cyclotron subgroup instead of the full
braid group.

The role of the short-range part of the Coulomb
interaction. – The Coulomb interaction is crucial for
LCs [2–4] but cannot be accounted for in a manner of
standard dressing particles with interactions as is typical
for quasiparticles in solids, because the interaction does
not have a continuous spectrum with respect to particle
separation expressed in relative angular-momentum
terms [2,3]. The interaction can be operationally included
within the Chern-Simons (Ch-S) field theory [16,17], an
effective description of the local gauge field attached to
particles, which, in the area of Hall systems, suits to
particles with vortices, such as anyons and CFs [18]. It
has been demonstrated [3,19] that the short-range part
of the Coulomb interaction stabilizes CFs against the
action of the Ch-S field (its anti-Hermitian term [19,20]),
which mixes states with distinct angular momenta within

LL [19], in disagreement with the CF model in the Ch-S
field approach [18,19]. The Coulomb interaction removes
the degeneracy of these states and results in energy gaps
which stabilize the CF picture, especially effectively for the
lowest LL. For higher LLs, the CFs are not as useful due to
possible mixing between the LLs induced by the interac-
tion [21]. The short-range part of the Coulomb interaction
also stabilizes the CFs in cyclotron braid terms [11],
similarly to how it removes the instability caused by the
Ch-S field for angular-momentum orbits in LL [19].
Indeed, if the short-range part of the Coulomb repulsion
was reduced, the separation of particles would not be
rigidly kept (adjusted to a density only in average) and
then other cyclotron trajectories, in addition to those for
a fixed particle separation (multi-loop at ν = 1

p
), would be

admitted, which would violate the subgroup construction.

Vortices —links with cyclotron braids. – For
Read’s CFs [6,7], LCs are modeled by collective vortices
that are attached to the particles. A vortex with its center
at z is defined as [6] V (z) =

∏N
j=1(zj − z)q, where q is the

vorticity. For odd q, it is linked to the Jastrow factor of
the LF (resulting by the replacement of z by zi and the
addition of i (i > j) to the product domain, i.e., binding
to electrons). In particular, for q= 1 one arrives at the
Vandermonde determinant, associated with the ordinary
single-loop cyclotron motion of N fermions on the plane at
ν = 1. Because the vortices are fragments of the Laughlin
function, they contain more information than just the
statistical winding phase shift (the latter expressed by the
factor,

∏
i,j(zi− zj)q/|zi− zj |q). 1DURs of the cyclotron

braid subgroups define the statistical phase winding, but
not the shape of the wave function, which is determined
via the energy competition between various wave functions
with the same statistical symmetry. Thus, vortices contain
information beyond just the statistical phase shift, they
also include the specific radial dependence of multi-fold
zeros pinned to particles through the Jastrow polynomial.
The vortex is a collective fluid-like concept that does not
meet the single-particle picture. The vorticity q is selected
in accordance with the known in advance Laughlin
function, thus, similarly as CF flux tubes, it requires a
motivation within the cyclotron structure.
The properties of vortices can be listed as follows [6]:

1) when traversing with an arbitrary particle zj a closed
loop around the vortex center, then the gain in phase is
equal to 2πq; 2) the vortex induces a depletion of the local
charge density, which results in a locally positive charge
(due to background jellium) that screens the charge of
the electron associated to the vortex center; this positive
charge is −qνe (for ν = 1/q it gives −e, which would
completely screen the electron charge); 3) exchange of
vortices results in a phase shift of q2νπ, (due to the
charge deficit of the vortex), which for ν = 1

q
gives qπ;

the q-fold vortex, together with the bound electron (which
contributes a charge e to the complex and produces a
statistics phase shift of π), forms a complex that behaves
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like a composite boson with zero effective charge for odd
q and like a composite fermion for even q. The bosons
can condense to exactly reproduce the LF for odd q [20],
while, for even q, one deals with the Fermi sea in a zero
net field, as in both cases the effective charge of the
complexes is zero; the latter case reproduces the Hall metal
state [22–24].
The second property explains why the model with

vortices works. The reduced effective charge of the
electron–vortex complex, results in an increase of the
cyclotron radius, which is necessary for particle exchanges
at fractional fillings.
All properties of vortices or flux tubes can be grasped

together by a formal local gauge transformation [20] of the
original fermion particles (defined by the field operator
Ψ(x)) to composite particles: Φ(x) = e−J(x)Ψ(x), Θ(x) =
Ψ+(x)eJ(x), where: J(x) = q

∫
d2x′ρ(x′) log(z− z′)− |z|24l2 ,

and e−J corresponds to a nonunitary, in general, transfor-
mation that describes the attachment of Read’s vortices
(or Jain’s flux tubes) to the bare fermions, Ψ(x) and
Ψ+(x) (for the annihilation and creation fields, respec-
tively). When restricting J(x) to only its imaginary part
(i.e., to the imaginary part of log), one arrives at the
Hermitian Ch-S field corresponding to the dressing of
fermions with local flux tubes [25]. The field operators

Φ(x) and Θ(x), Φ+(x) =Θ(x)eJ(x)+J
+(x), though are not

mutually conjugated (they are perfectly conjugated for
the Hermitian Ch-S field), describe composite bosons (for
odd q) and composite fermions (for even q) within the
mean-field approach [20] (remarkably, the real part of
J vanishes in the mean field, as the real part of log is
canceled by the Gaussian, while the Hermitian Ch-S field
is canceled by the external magnetic field). From the rela-

tion eq
∑
j log(z−zj) =

∏N
j (z− zj)q (for the density oper-

ator ρ(x) =Ψ+(x)Ψ(x) =⇒∑Nj=1 δ(z− zj)), which coin-
cides with the definition of Read’s vortex, one can expect
that the above local gauge transformation reproduces
all properties of the vortices. This gauge transformation
allows for the interpretation of the Laughing state as a
Bose-Einstein condensate of composite bosons, at ν = 1

q
,

q odd, [6,20], and as a compressible fermion sea, at q
even, [23,24] (the latter is unstable against BCS-like pair-
ing) [7,26]. Assuming that the CFs are defined by the
1DURs of the cyclotron subgroup, the Hermitian term of
this gauge transformation should be omitted, because it
defines CFs when starting from ordinary fermions, which
are already taken into account in terms of cyclotron braids.

Compressible Hall-metal state in cyclotron braid
terms. – Let us finally comment on the ν = 12 state (Hall
metal) from the point of view of the braid approach.
Within Jain’s model, two flux tubes attached to composite
fermions completely cancel an external magnetic field
in the mean-field approximation (in other words, the
Hermitian Ch-S field associated with Jain’s model cancels,
in mean field, the external magnetic field), and this

results in a Fermi sea, called the Hall metal state [22].
Within Read’s approach to composite particles at ν = 12 ,
the complete cancellation of charge takes place due to
the charge density depletion of the vortex with q= 2.
Mutual interchange of 2-fold vortices produces q2νπ= 2π
phase shift and including additional π due to electrons,
the complexes of 2-fold vortices with electrons behave
like fermions (without charge) —thus form a Fermi sea
(Hall metal). The instability of the Fermi system, results
next in a paired state expressed by the Pfaffian factor,
restoring incompressibility due to the pairing-gap (BCS-
like paired state at ν = 5/2 [26,27], also considered for
ν = 1/2 and 1/4 [28,29]). As Pfaffian [7] contributes with
−π to the phase shift due to particle interchanges, the
total phase shift of the wave function with the Jastrow
polynomial

∏
i>j(zi− zj)2 [7,26] is π. This phase is given

by the 1DUR of the cyclotron braid group (with p= 3,
as such a cyclotron braid subgroup corresponds to the
range ν ∈ [1/3, 1)) assigned by pα= 313π= π, i.e., α= 13π.
The representation (p= 3, α= 13π) induces the fermion
statistics phase shift of the many-particle wave function
for ν = 1/2, and in terms of braid-composite fermions,
it corresponds to a net composite electron Fermi sea
(since two loops take away the total external flux), in
consistence with the local gauge transformation with
q= 2, thus reproducing fermions (starting from ordinary
fermions) [6,20].
In summary, we argue that, at fractional LL fillings,

braid trajectories must be multi-looped, while those
with lower number of loops (including single-looped)
are excluded due to too short cyclotron radius. This
unavoidable property of braids recovers LCs in a natural
way for 2D charged systems upon strong magnetic field
and explains the structure of CFs both with flux tubes
or vortices. Unitary representations of cyclotron braids
allow also for a self-consistent explanation of compressible
states at fillings with even denominators. For example,
the ν = 1/2 metal Hall state corresponds to composite
anyons with pα= 313π= π number of 1DUR of the p= 3
cyclotron braid subgroup.
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