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Abstract – The problem of solute transport in interacting ordered porous media is addressed by
numerically solving the 2D Fokker-Planck equation using 4-step operator splitting. The subtle
interplay between drift and diffusion is shown to result in a nontrivial dependence of solute
transport kinetics on pore size. Depending on the strength of attraction to pore walls distinct
regimes of pore size dependence of transport kinetics are found. The results suggest a decoupling
of local dynamics from large-scale transport.

Copyright c© EPLA, 2010

Introduction. – The importance of understanding
molecular transport in porous media has long been recog-
nized [1–6] and its applications range from rheology,
composite materials, polymer and colloidal science, geol-
ogy to biophysics and drug delivery. Intensive theoret-
ical investigations of microscopic dynamics of fluids in
porous media in the absence of large-scale concentration
gradients have shed light on several subtle features of
transport in random porous media, such as the inter-
play between self and collective dynamics in dilute and
dense matrices [7], the qualitative transitions of parti-
cle dynamics depending on the obstacle density and
configurations [8], distinct dynamical arrest transitions
in glass-forming mixtures [9], long-time correlations due
to quenched disorder [10] and breakdown of continuum
hydrodynamics at the nanoscale [11]. Also it was shown,
that the local dynamics are sensitive to the matrix struc-
ture (i.e. order) [12]. Moreover, the particle dynamics
involving several time and length scales are very difficult to
analyze. One therefore seeks an effective equation describ-
ing the particle behavior at long times and large scales.
This can be done using homogenization theory [13]. It
was shown, that the effective diffusivity in random or peri-
odic velocity fields is always enhanced (compared to bare
molecular diffusion) for incompressible flows [14,15] and
always depleted for potential flows [16–18]. Effective trans-
port coefficients in external fields can also be obtained
within the framework of linear response theory [19], for

(a)E-mail: aljaz.godec@ki.si

weak external fields, or nonlinear response [20], for fields
of arbitrary magnitude. However, the local and large-scale
dynamics in interacting ordered porous matrices in the
presence of macroscopic concentration gradients are not
well understood.
Here we address this problem by numerically solving the

Fokker-Planck equation (FPE). We probe the influence of
pore size and interaction strength and range on the trans-
port kinetics within and from the matrix and address the
influence of the initial degree of local concentration relax-
ation in the matrix. We also compute effective large-scale
diffusion coefficients at long times and the evolution of the
macroscopic concentration gradient for solute transport
from the matrix for different pore sizes and attractions.
We consider a simple 2-dimensional ordered porous model
system (see fig. 1), which should be interesting for various
applications, such as transport of reactants in membranes,
nutrients or contaminants in soil, etc., but is particularly
motivated by drug delivery from ordered mesoporous sili-
cates.
By considering the dimension of the unit cell with

respect to L one immediately recognizes that a scale
separation in the case of larger pores might not be achieved
and that in turn the large-scale transport is also influenced
by finite-size effects. Although a quantification of scale
separation can only be done a posteriori, one can assume
that in the case of larger pores it is certainly not achieved.
However, it was shown [21] that in case of free diffusion
in a system with a 2D period, which possesses two plane
symmetries (which is the case in the present system), scale
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Fig. 1: Schematics of 2D porous matrix: d denotes the pore size,
L the size of the porous matrix, LB denotes the buffer zone and
a the thickness of the pore wall. The gray area represents the
pore volume. In all considered cases parameters a and d were
chosen to assure equal pore volume, Vp =L

2−n2a2 = const.,
given the constant pore entrance area, 4(n− 1)d= const., and
constant particle size, L= na+(n− 1)d. Specifically we take
L= 90∆, LB = 155∆ and the following d (n) values: d0 (2),
d0/2 (3), d0/3 (4) and d0/7 (8), with d0 = 42∆. The grid origin
is placed in the center of the matrix.

separation is not indispensable to obtain a large scale
effective transport, that is independent of the total size
of the porous matrix. Therefore, since the the external
potential also fulfills the symmetry requirements, even in
the case of largest pore size considered here the results in
principle should not reflect any finite-size effects.
A 4-step operator splitting method [22] is used to solve

the dynamical equations under reflecting boundary condi-
tions. The size of the system is chosen to be large enough to
assure that interactions vanish at large distances and that
concentrations never reach appreciable values at exter-
nal borders. The approach enables us to efficiently and
systematically investigate the subtle interplay between
energetic and entropic driving forces involved in solute
transport in attractive ordered porous media.

Mathematical model. – The dynamics of the dimen-
sionless solute concentration field ϕ(r) are assumed to
be governed by drift due to the local forces exerted on
diffusing molecules by pore walls and diffusion due to the
presence of local concentration gradients. Assuming a low
Reynolds number environment and isotropic mobility, we
model the system dynamics with the linear 2D macro-
scopic FPE

∂ϕ(r)

∂t
=D∇xy ·

(
ϕ(r)

kBT
∇xyV (r)+∇xyϕ(r)

)
≡−∇xy · j,

(1)
where ∇xy represents the 2D gradient operator, ∇xy =
∂/∂xx̂+ ∂/∂yŷ, D is the diffusion coefficient, kB is the
Boltzmann constant, T is the temperature, r is the 2D
position vector r= (x, y), V (r) represents the external
potential field and j the generalized solute flux. We assume
that the diffusing molecules interact with matrix wall
molecules via pairwise additive potential of the Morse

type,

V (r) = qmin

∫
R

ρ(r′)
(
e2σ(dm−|r−r

′|)− 2eσ(dm−|r−r′|)
)
d2r′,

(2)
where ρ(r′) is the local density of the porous material
(ρ(r′) = 1 if r′ lies within the wall and 0 otherwise), qmin
and dm are the depth and position of the pair potential
minimum and σ is the width of the potential well.

Numerical algorithm. – We discretize the FPE
with 4-step operator splitting (see for example [22,23]):
∂ϕ/∂t=D∇xy · (ϕ∇xyV (r)/kBT )+D∇2xyϕ≡(L̂1x+L̂1y)ϕ+
(L̂2x+ L̂2y)ϕ, where the first and second pair of steps are
treated with alternating-direction implicit method (ADI)
and thus all substeps are differenced implicitly:

L̂1x →
D

2

(
ϕ
n+1/4
i+1,j − 2ϕn+1/4i,j +ϕ

n+1/4
i−1,j

∆2

+
ϕni,j+1− 2ϕni,j +ϕni,j−1

∆2

)
, (3)

L̂1y →
D

2

(
ϕ
n+1/4
i+1,j − 2ϕn+1/4i,j +ϕ

n+1/4
i−1,j

∆2

+
ϕ
n+1/2
i,j+1 − 2ϕn+1/2i,j +ϕ

n+1/2
i,j−1

∆2

)
, (4)

L̂2x→
D

2

(
ϕ
n+3/4
i+1/2,jδṼ

x
i+1/2,j −ϕn+3/4i−1/2,jδṼ

x
i−1/2,j

∆2

+
ϕ
n+1/2
i,j+1/2δṼ

y
i,j+1/2−ϕn+1/2i,j−1/2δṼ

y
i,j−1/2

∆2

)
, (5)

L̂2y→
D

2

(
ϕ
n+3/4
i+1/2,jδṼ

x
i+1/2,j −ϕn+3/4i−1/2,jδṼ

x
i−1/2,j

∆2

+
ϕn+1
i,j+1/2δṼ

y
i,j+1/2−ϕn+1i,j−1/2δṼ

y
i,j−1/2

∆2

)
, (6)

where i and j represent spatial coordinates, the super-
script n denotes the time step, ϕni±1/2,j = (ϕ

n
i±1,j +ϕni,j)/2

and δṼ y
i,j−1/2 = (0.5[Ṽi,j+1− Ṽi,j−1] + 0.5[Ṽi,j − Ṽi,j−2])/2

are concentrations and components of external forces
at mesh half-points, ∆x=∆y=∆ is the grid spacing
and Ṽi,j = Vi,j/kBT . Differencing of the potential at half-
points is crucial for the numerical stability. Introducing
α≡D∆t/∆2 and performing some basic algebraic manip-
ulation eqs. (3)–(6) yield tridiagonal sets of coupled linear
equations (for details see appendix).
The parameter dm in the pair potential is set equal to

the grid spacing ∆, which means that we consider only
the attractive branch of the interaction. Hard repulsive
interactions are introduced implicitly through Neumann
boundary conditions for the concentrations and the poten-
tial. This way, there is no driving force for transport into
pore walls and outer borders, as the drift Dϕ∇xyV/kBT
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Fig. 2: 〈Vmin〉 and −〈Vcent〉 as a function of qmin for all pore
sizes considered in the calculations. Systems with σ= 0.8: (•)
d0/7, (�) d0/3, (∗) d0/2, (+) d0. Systems with σ= 1.2: (�)
d0/7, (◦) d0/3, (�) d0/2, (×) d0.

is also identically zero. Inside the walls the concentration
is zero at all times. The resulting systems of equations are
solved sequentially with LU decomposition, forward and
backward substitution. All together we perform 1.2× 105
time steps choosing α= 0.2.

External potential. – To establish a direct correspon-
dence between the parameters of the pair potential and
the resulting external potential we introduce the average
potential in the center of the pores, 〈Vcent〉, and the aver-
age contact potential 〈Vmin〉 (see footnote 1), which is
the potential averaged over all grid points that are adja-
cent to pore walls. In our calculations we consider two
values for the pair potential width σ (0.8 and 1.2) and
potential depth qmin values ranging from 0 to 0.5. Such
choice of σ is assumed to model realistic long- and short-
ranged pair attractions of different strengths. We consider
4 different porous systems with equal total pore volume
as well as with equal total pore entrance area (for details
see schematics in fig. 1). The dependence of the exter-
nal potential on pore size (and thereby also wall thick-
ness) expressed as 〈Vmin〉 and 〈Vcent〉 as a function of
qmin is shown in fig. 2. On switching between σ= 0.8 and
σ= 1.2 at given qmin and pore size, 〈Vmin〉 reduces on
average by a factor of 2, while 〈Vcent〉 is reduced by up to
several orders of magnitude. For constant σ the average
contact attraction is strongest in case of larger pores and
decreases monotonically with decreasing pore size, which
follows directly from the corresponding wall thickness. The
threshold where 〈Vmin〉 exceeds the thermal energy typi-
cally lies between qmin = 0.27 and qmin = 0.5, depending
on σ and pore size. 〈Vcent〉 becomes comparable to the
thermal energy only in case of d0/7 for qmin > 0.3. From
this observation we see, that the steady-state solution of

1We define the average contact potential as 〈Vmin〉=
∑Nw
k=1∫ ∫

d2rd�δ(|r − rkw(�)| −∆)(1 − ρ(r))V (r)/[
∑Nw
k=1

∫ ∫
d2rd�δ(|r−

rkw(�)| −∆)(1− ρ(r))], where rkw(�) = (xkw(�), ykw(�)) is the position
vector of the k-th wall facet along its contour � and the sum runs
over all wall facets, Nw.

the FPE (eq. (1)), which is proportional to the Boltzmann
distribution exp(−V (r)/kBT ), will depart from a homo-
geneous concentration distribution mainly in the vicinity
of pore walls (except for the smallest pore size).

Time evolution of the concentration field. – We
consider two types of initial concentration distributions,
a homogeneous distribution, where the solute concentra-
tion equals 1 inside the pores and zero outside, and a
concentration proportional to the Boltzmann distribution
inside the pores and zero outside. Initial distributions are
normalized to assure equal total amount of solute in all
cases. With this choice of initial conditions we can readily
asses the relative timescales of the local and macroscopic
solute concentration relaxation processes. In order to asses
the influence of pore size on transport from interacting
porous matrices we introduce the release half-time, t1/2,
which expresses the time at which one-half of the solute
molecules have left the porous matrix. We define it implic-
itly as an integral of the total flux across the outer matrix
surface:∫ t1/2

0

dτ

∮
O

j(r, τ) ·dS= 1
2

∫
R

d2rϕ(r, τ = 0). (7)

t1/2 is a measurable quantity which is also directly related
to drug release experiments. We further assume that
the large-scale solute transport can at long times be
described by a 1D free-diffusion process with an effective-
diffusion coefficient, ∂ϕls/∂t=Deff∂

2ϕls/∂x
2 which

evolves from a box-shaped initial distribution with size
L. In this case the solution is ϕls(x, t) =ϕ

0
ls(erf[(L/2−

x)/(2(Deff t)
1/2)]+ erf[(L/2+x)/(2(Deff t)

1/2)])/2 and
the cumulative amount of solute outside the box (i.e.

|x|>L/2) is Lϕ0ls−
∫ L/2
−L/2 ϕlsdx. The fraction of solute

outside the matrix as a function of time is found by
performing the integral explicitly and can be shown to be
given by

Θ(t) = 1−
erf

[
L

2
√
Deff t

]
4Deff t

−
exp
[
−L2
4Deff t

]
− 1

2L
√
πDeff t

. (8)

Deff is in turn obtained from ϕ(r, t) by fitting∫ t
0
dτ
∮
O
j(r, τ) ·dS with eq. (8) for long times. The

last 25× 104 steps were used in the fitting procedure
and the largest standard deviation in obtained Deff was
below 0.1%. As shown in figs. 3(a) and (c) reduction
of pore size results in faster transport from the matrix
for qmin < 0.25 in case of σ= 1.2 (qmin < 0.2 in case
of σ= 0.8, respectively). This was also demonstrated
in the case of nonlinear diffusion (i.e. assuming a
concentration-dependent diffusion coefficient) in porous
media with hard repulsive walls [24]. On the other hand,
a reduction of pore size always slows down transport
from the matrix in the case of qmin > 0.4 (for σ= 1.2)
and qmin > 0.35 (for σ= 0.8). For intermediate values
of qmin a reduction of pore size may in fact enhance or
slow down solute transport from the matrix, depending
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Fig. 3: t1/2 in the case of (a) σ= 1.2 and (c) σ= 0.8 as
calculated using eq. (7) (broken lines denote t1/2 in the
case of Boltzmann-distributed initial concentration within the
matrix). After solving for ϕ(r, τ) the integral was evaluated
numerically. Long-time effective-diffusion coefficients in the
case of (b) σ= 1.2 and (d) σ= 0.8. Deff for the initially
Boltzmann-distributed concentration are not shown because
they do not differ from the flat initial distribution (the
difference is within the error).

on the pore size. In this mixed regime, 〈Vmin〉 ≈−kBT ,
while 〈Vcent〉 is (except in the case of smallest pore size)
negligible. In case of increasingly stronger attractions,
drift always dominates and a reduction of pore size slows
down transport from the matrix. Except in the case of
largest pore size, t1/2 is essentially independent of initial
conditions and thus the degree of initial local relaxation,
which already suggests that the microscopic relaxation
is much faster. Note that for the largest pore size t1/2
in fact decreases upon increasing attraction if starting
from the Boltzmann distribution, which suggest that the
drift-dominated local relaxation becomes slower in case
of larger pores. Consistent with t1/2 behavior, the pore
size dependence of Deff (figs. 3(c) and (d)) also becomes
inverted in the case of sufficiently strong attractions. In
the absence of strong interactions, the entropic driving
force (concentration gradient) will completely dominate
the local dynamics of the solute concentration, except in
the immediate proximity of pore walls, where we may
expect some drift in the direction towards pore walls due
to attractive forces. A snapshot of local fluxes at the
border of the porous matrix for the d0/7 system with
qmin = 0.2 (just below the mixed regime) at τ = 5 · 103 ∆t
(∆t= α∆2/D) is shown in figs. 4(a) and (b). As observed,
near the matrix surface the total flux is dominated by
the entropic driving force, causing a significant flux from
the matrix. Going towards the center of the matrix, the
drift component gradually builds up until it completely
dominates. The flux along the pore increases from the
center of the matrix to its surface. Larger concentration
gradients are maintained near the surface, which is even

y
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Fig. 4: Diffusive (red) and drift (green) components together
with the total flux (blue arrows) in the porous matrix with
smallest pore size at time τ = 5 · 103 ∆t for σ= 0.8. (a) and
(b) correspond to qmin = 0.2 kBT and (c) and (d) correspond
to qmin = 0.4 kBT . The vectors are scaled up for visual
convenience (the ratio of scales (a) : (b) : (c) : (d) is 28 : 20 : 1 : 5).
The outermost pore walls are located at (−45,±3); the position
of the vectors corresponds to their origin.

more pronounced in the case of larger pores (see text
below and concentration distributions for qmin � 0.2
in fig. 5). In the presence of strong attractions drift
dominates everywhere except in the center of the pores,
where the force in the direction of the wall is zero by
symmetry (see figs. 4(c) and (d) showing a snapshot for
d0/7 and qmin = 0.4 at τ = 5 · 103 ∆t). The flux from the
porous matrix is strongly reduced. Note however, that
the drift-dominated local dynamics inside the matrix
are in fact very intense and the total local fluxes are
significantly larger than in the case of weaker attractions.
The net effect of local fluxes is to cause the solute to
accumulate near the walls and to establishes, what can
be understood as, a sort of multilayer adsorption (see
also fig. 5). Therefrom ϕ(r) slowly relaxes towards to
the Boltzmann distribution. The progressively stronger
adsorption can be nicely observed from the growing
contact concentration in the pore. By comparing figs. 5(a)
and (b), which show concentration profiles through the
matrix for two different pore sizes, we observe, that the
total solute concentration difference between the center
of the porous matrix and the surrounding medium is
significantly larger in the case of smaller pores. If we
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define the average concentration in the center of the
matrix, cin, as the average over points lying in the center
of pores of the smallest central symmetric unit and
the average external concentration, cout, as the average
over the square with side L+10∆, we can quantify the
effective macroscopic driving force in terms of the average
concentration difference, ∆c= cin− cout. The time evolu-
tion of ∆c is shown in fig. 6. By comparing the full and
broken lines one readily observes the influence of initial
conditions on the overall driving force for large-scale
solute transport. As expected the initial ∆c difference for
Boltzmann-distributed and flat initial conditions is larger
in the case of stronger and long-ranged attractions, while
at given interaction it is larger in the case of smaller
pores. The time at which both curves, corresponding to
a given qmin, σ and d, converge may be interpreted as
the local microscopic relaxation timescale. This timescale
is obviously pore size dependent and is longer in the
case of larger pores, which follows directly from the
distance which solute molecules have to traverse prior
to adsorption at the pore wall if starting from a flat
distribution. More interestingly it appears to be almost
independent of qmin and σ at a given d, which means
the the entropic and energetic effects on large-scale
transport balance each other upon increasing attraction
strength and range at a given pore size. In general the
microscopic relaxation is up to 3 orders of magnitude
faster than the macroscopic solute transport as measured
with t1/2. This explains the apparent independence of
t1/2 from the initial concentration distribution. From
fig. 6 one also observes that the effective macroscopic
concentration gradient at long times is larger for smaller
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Fig. 6: Time evolution of ∆c in the case of (a) σ= 1.2 and
(b) σ= 0.8. Results for the d0/3 porous system: ( )
qmin = 0.2, ( ) qmin = 0.3, ( ) qmin = 0.4; results for the d0/7
porous system: ( ) qmin = 0.2, ( ) qmin = 0.3, (–) qmin = 0.4.
Broken lines correspond to the initially Boltzmann distributed
and full lines to the homogeneously distributed concentration
inside the pores.

pores. Hence, the overall entropic driving force, is larger
due to a more attractive potential in the center of smaller
pores. The relative cross-section of the pore effectively
contributing to transport along the pore, which decisively
contributes to Deff in figs. 3(b) and (d), is larger in the
case of larger pores. The total entropic driving force,
however, is smaller. Hence we see, that although an
inversion of transport kinetics form the porous matrix
occurs at sufficiently strong attraction regardless of the
pore size, the underlying mechanism differs in smaller
and larger pores. Even though it is always mediated by
drift, reduction of kinetics in smaller pores occurs due
to a smaller effective-axial-transport region (manifested
macroscopically as a lower Deff ) and a more favorable
attractive potential in the center of the pores, while in
larger pores the total entropic driving force is strongly
reduced due to more extensive adsorption (and in turn
larger depletion in the region of effective axial transport
and thus smaller ∆c). By comparing concentration
distributions in fig. 5, for qmin � 0.2 effects of external
forces are strictly local and affect the concentration only
inside single pores (which is seen in fig. 3), while upon
increasing strength of interaction the coupling of local
effects gradually increases.
Our results also suggest that the generally accepted

and experimentally confirmed effect of reduction of drug
release kinetics upon reduction of pore size [25–28] can
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only be reproduced theoretically by including sufficiently
strong attractions to pore walls.
One important issue, which has not been addressed here,

is also the effect of transport acceleration by reduction
of dimensionality [29], where the geometry of the exter-
nal potential creates a preferential connected pathway
through the medium, which can accelerate solute trans-
port as compared to the absence of potential. Such a study
is currently in progress.

Summary. – In this letter we addressed a fundamen-
tal issue of solute transport in attractive ordered porous
media, in particular the effect of pore size and solute-wall
attraction. We found that the pore size dependence of
solute transport kinetics from the porous matrix greatly
depends on the strength and range of attractions to pore
walls. Regardless of pore size, solute transport from the
matrix is always reduced in case of sufficiently strong
attractions to pore walls. The mechanism leading to this
depletion of release, however, differs in smaller and larger
pores. In the first case the dominant mechanism appears
to be a reduction of the effective large-scale diffusion coef-
ficient and in the latter (especially for short-range attrac-
tions) a reduction of the entropic driving force for large-
scale transport. We found the local dynamics to be rather
decoupled from the large-scale transport. As a result, the
overall solute release kinetics are insensitive to the degree
of initial local relaxation. The local relaxation timescale
depends on the pore size, but is, rather surprisingly, insen-
sitive to the strength and range of attractions to pore
walls. Our findings may impact the design of novel porous
matrices, especially for application in drug delivery.

Appendix

Upon elementary algebraic manipulation of eqs. (3)–(6)
one obtains tridiagonal sets of coupled linear equations
Tlkϕ= r

l
k, k= x, y and l= 1, 2. The explicit forms of T

l
k

and rlk corresponding to specific substeps are the following.
For the first two ADI substeps we have T1x =T

1
y ≡T1,

with diagonal elements equal to 1+α and off-diagonal
elements −α/2. The corresponding vector components
are r1i,x = αϕ

n
i,j+1/2+ (1−α)ϕni,j +αϕni,j−1/2 and r1i,y =

αϕ
n+1/4
i+1,j /2+ (1−α)ϕn+1/4i,j +αϕ

n+1/4
i−1,j /2 respectively. For

the third substep the elements of T2x are b
x
i (diagonal),

axi (the left off-diagonals) and c
x
i (the right off-diagonals),

where axi =αδṼ
x
i−1/2,j/4, b

x
i=1−α(δṼ xi+1/2,j−δṼ xi−1/2,j)/4,

cxi =−αδṼ xi+1/2,j/4. The vector components are r2i,x =
αδṼ y

i,j+1/2ϕ
n+1/2
i,j+1 /4+(1+α[δṼ

y
i,j+1/2−δṼ yi,j−1/2])ϕn+1/2i,j −

αδṼ y
i,j−1/2ϕ

n+1/2
i,j−1 /4. For the last substep the elements of

T2y are b
y
j (diagonal), a

y
j (the left off-diagonals) and c

y
j (the

right off-diagonals), with axj = αδṼ
x
i,j−1/2/4, b

y
j = 1−α

(δṼ y
i,j+1/2− δṼ yi,j−1/2)/4, cxj =−αδṼ xi+1/2,j/4 and the

vector components r2j,y = αδṼ
x
i+1/2,jϕ

n+3/4
i+1,j /4+ (1+

α[δṼ xi+1/2,j − δṼ xi−1/2,j ])ϕn+3/4i,j −αδṼ xi−1/2,jϕn+3/4i−1,j /4.
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