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Abstract – Some features of hot and dense gas of quarks which are considered as the quasi-
particles of the model Hamiltonian with four-fermion interaction are studied. Being adapted to
the Nambu–Jona-Lasinio model this approach allows us to accommodate a phase transition similar
to the nuclear liquid-gas one at the proper scale. It allows us to argue the existence of the mixed
phase of vacuum and baryonic matter (even at zero temperature) as a plausible scenario of chiral
symmetry (partial) restoration.
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Understanding in full and describing dependably the
critical phenomena (chiral and deconfinement phase tran-
sitions) in QCD is still elusive because of the necessity to
have the corresponding efficient non-perturbative meth-
ods for strongly coupled regime analyzed. For the time
being such studies are pursued by invoking diverse effec-
tive models. The Nambu–Jona-Lasinio(NJL)–type models
are certainly playing the most advanced role in this
analysis [1]. This approach deals with the four-fermion
interactions in lieu of a gluon field QCD dynamics and
does not incorporate (albeit being supplemented by the
Polyakov loops it does [2]) the property of confinement. At
the same time it is quite successful in realizing the spon-
taneous breakdown of chiral symmetry and its restora-
tion at nonzero temperatures or quark densities. Appar-
ently, the non-renormalizable nature of the NJL model
requires another approximation to be solved and might
lead to some conclusions which are sometimes dependent
on the regularization scenario. Hence, it requires a stead-
fast control of all inputs done to have the consistent physi-
cal results and to avoid the reasons for a skeptical attitude
as it was exemplified in [3].
Instructive example was given in refs. [4] and [5] in

which the ground state of the model Hamiltonian with
four-fermion interactions was studied in detail. The quarks
were treated as the quasi-particles of this Hamiltonian
and an unexpected singularity (discontinuity) of the mean

(a)E-mail: molodtsov@itep.ru

energy functional as a function of the current quark mass
was found. In the particular case of the NJL model new
solution branches of the equation for dynamical quark
mass as a function of chemical potential have been found,
and the appearance of a state filled up with quarks which
is almost degenerate with the vacuum state both in quasi-
particle chemical potential and in ensemble pressure has
been discovered.
Here we are going to study the quark ensemble features

at finite temperature and fixed baryonic chemical potential
and to analyse the first-order phase transition which takes
place in such a system of free quasi-particles. The analysis
is performed within the framework of two approaches
which are supplementary, in a sense, albeit giving identical
results. One of these approaches, based on the Bogolyubov
transformations, is especially informative to study the
process of filling the Fermi sphere up because at this
point the density of quark ensemble develops a continuous
dependence on the Fermi momentum. It allows us to reveal
an additional structure in the solution of the gap equation
for dynamical quark mass just in the proper interval of
parameters characteristic for phase transition and to trace
its evolution. The result is that quark ensemble might be
found in two aggregate states, gas and liquid, and the
chiral condensate is partially restored in a liquid phase.
In order to make these conclusions easily perceptible we
deal with the simplest version of the NJL model (with
one flavor and one of the standard parameter sets) and,
actually, do not aim to adjust the result obtained with
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well-known nuclear liquid-gas phase transition. Besides,
it seems our approach might be treated as a sort of
microscopic ground of the conventional bag model and
those states filled up with quarks are conceivable as a
natural “construction material” for baryons.
Now as an input to start with we remind the key

moments of the approach developed. The corresponding
Hamiltonian includes the interaction term taken in the
form of a product of two coloured currents located in the
spatial points x and y which are connected by a form-
factor and its density reads as

H=−q̄(iγ∇+im)q−q̄taγµq
∫
dyq̄′tbγνq′〈AaµA′bν 〉, (1)

where q= q(x), q̄= q̄(x), q′ = q(y), q̄′ = q̄(y) are the quark
and antiquark operators,

qαi(x) =

∫
dp

(2π)3
1

(2|p4|)1/2
[
a(p, s, c)uαi(p, s, c)e

ipx

+ b+(p, s, c)vαi(p, s, c)e
−ipx], (2)

p24 =−p2−m2, i is the colour index, α is the spinor
index in the coordinate space, a+, a and b+, b are the
creation and annihilation operators of quarks and anti-
quarks, a|0〉= 0, b|0〉= 0, |0〉 is the vacuum state of
free Hamiltonian and m is a current quark mass. The
summation over indices s and c is meant everywhere, the
index s describes two spin polarizations of the quark and
the index c plays a similar role for the colour. As usual
ta = λa/2 are the generators of SU(Nc) colour gauge group
andm is the current quark mass. The Hamiltonian density
is considered in the Euclidean space and γµ denote the

Hermitian Dirac matrices, µ, ν = 1, 2, 3, 4. 〈AaµA
′b
ν 〉 stands

for the form factor of the following form:

〈AaµA′bν 〉= δab
2G̃

N2c − 1
[I(x−y)δµν −Jµν(x−y)], (3)

where the second term is spanned by the relative distance
vector and the primed gluon field denotes that in the
spatial point y. The effective Hamiltonian density (1)
results from averaging the ensemble of quarks influenced
by the intensive stochastic gluon field Aaµ, see ref. [4]. For
the sake of simplicity we neglect the contribution of the
second term of the above formula in what follows. The
ground state of the system is searched as the Bogolyubov
trial function composed of the quark-antiquark pairs
with opposite momenta and with vacuum quantum
numbers, i.e.

|σ〉= T |0〉,
T =Πp,s exp{ϕ[a+(p, s)b+(−p, s)+ a(p, s)b(−p, s)]}.

(4)

In this formula and below, in order to simplify the
notations, we refer to only one complex index which means
both the spin and colour polarizations. The parameter
ϕ(p) which describes the pairing strength is determined by

the minimum of mean energy E = 〈σ|H|σ〉. By introducing
the “dressing transformation” we define the creation and
annihilation operators of quasi-particles as A= T aT −1,
B+ = T b+T −1 and for fermions T −1 = T †. Then the
quark field operators are presented as

q(x) =

∫
dp

(2π)3
1

(2|p4|)1/2
[
A(p, s)U(p, s)eipx

+ B+(p, s)V (p, s)e−ipx
]
,

q̄(x) =

∫
dp

(2π)3
1

(2|p4|)1/2
[
A+(p, s)U(p, s)e−ipx

+ B(p, s)V (p, s)eipx
]
,

moreover, the transformed spinors U and V are given by
the following forms:

U(p, s) = cos(ϕ)u(p, s)− sin(ϕ)v(−p, s),
V (p, s) = sin(ϕ)u(−p, s)+ cos(ϕ)v(p, s),

(5)

where U(p, s) =U+(p, s)γ4, V (p, s) = V
+(p, s)γ4 are the

Dirac conjugated spinors.
In the paper, ref. [5], the process of filling in the Fermi

sphere with the quasi-particles of quarks was studied
by constructing the state of the Sletter determinant
type |N〉=

∏
|P|<PF ;S A

+(P;S)|σ〉, which possesses the
minimal mean energy over the state |N〉. The polarization
indices run over all permissible values here and the
quark momenta are bounded by the limiting the Fermi
momentum PF . The momenta and polarizations of states
forming the quasi-particle gas are marked by capital letters
similar to the above formula. In all other cases small letters
are used.
As is known the ensemble state at finite temperature T

is described by the equilibrium statistical operator ρ. Here
we use the Bogolyubov-Hartree-Fock approximation in
which the corresponding statistical operator is presented
by the following form:

ρ=
e−β Ĥapp

Z0
, Z0 =Tr{e−βĤapp}, (6)

where some approximating effective Hamiltonian Happ
is quadratic in the creation and annihilation operators
of quark and antiquark quasi-particles A+, A, B+, B
and is defined in the corresponding Fock space with the
vacuum state |σ〉 and β = T−1. We do not need to know
the exact form of this operator henceforth because all
the quantities of our interest in the Bogolyubov-Hartree-
Fock approximation are expressed by the corresponding
averages (a density matrix):

n(P ) =Tr{ρA+(P;S)A(P;S)},
n̄(Q) =Tr{ρB+(Q;T )B(Q;T )},

which are found by solving the following variational
problem. One needs to determine the statistical operator
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ρ in such a form in order to have at the fixed mean charge

Q̄4 =Tr{ρQ4}= V 2Nc
∫
dp

(2π)3
[n(p)− n̄(p)], (7)

where

Q4 =

∫
dp

(2π)3
−ip4
|p4|

[
A+(p)A(p)+B(p)B+(p)

]
,

for the diagonal component (of our interest here, Q4 =
−
∫
dxq̄iγ4q) and the fixed mean entropy

S̄ = −Tr{ρ ln ρ}=−V 2Nc
∫
dp

(2π)3
[n(p) lnn(p)

+ (1−n(p)) ln(1−n(p))+ n̄(p) ln n̄(p)
+ (1− n̄(p)) ln(1− n̄(p))], (8)

(S =−lnρ), the minimal value of mean energy of quark
ensemble E =Tr{ρH}. The definition of mean charge is
given here up to the unessential (infinite) constant coming
from permuting the operators BB+ in the charge operator
Q4. It may not be out of place to remind that the mean
charge should be treated in some statistical sense because
it characterizes quark ensemble density and has no colour
indices.
Calculating the corresponding matrix elements one can

obtain the following result for mean energy density per one
quark degree of freedom (in this brief letter we omit the
details which can be found in [6]) w= E/2Nc, E =E/V ,
where E is a total energy of the ensemble,

w =

∫
dp

(2π)3
|p4|+

∫
dp

(2π)3
|p4| cos θ[n(p)+ n̄(p)− 1]

− G
∫
dp

(2π)3
sin (θ− θm) [n(p)+ n̄(p)− 1]

×
∫
dq

(2π)3
sin (θ′− θ′m) [n(q)+ n̄(q)− 1] I. (9)

(up to the constant unessential for our consideration here).
In this formula the following notations are used: p=
|p|, q= |q|, θ= 2ϕ, θ′ = θ(q), I = I(p+q), and the angle
θm(p) is determined by the condition as follows: sin θm =
m/|p4|. It is interesting to notice that the existence of such
an angle stipulates the discontinuity of the mean energy
functional mentioned above and found out in [4]. It was
quite practical to single out the colour factor in the four-
fermion coupling constant as G= 2G̃/Nc also.
We are interested in minimizing the following func-

tional Ω=E−µQ̄4−T S̄, where µ and T are the
Lagrange factors for the chemical potential and tempera-
ture, respectively. The approximating Hamiltonian which
we discussed above Ĥapp, is constructed simply by using
the information on E−µQ̄4 of the presented functional
(see, also below). For the specific contribution per one

quark degree of freedom f = F/2Nc, F =Ω/V , we obtain

f =

∫
dp

(2π)3
[|p4| cos θ(n+ n̄− 1)−µ(n− n̄)]

+

∫
dp

(2π)3
|p4| −G

∫
dp

(2π)3
sin (θ− θm) (n+ n̄− 1)

×
∫
dq

(2π)3
sin (θ′− θ′m) (n′+ n̄′− 1)I

+ T

∫
dp

(2π)3
[n lnn+(1−n) ln(1−n)

+ n̄ ln n̄+(1− n̄) ln(1− n̄)]. (10)

Here the primed variables correspond to the momentum
q. The optimal values of parameters are determined by
solving the following system of equations (df/dθ= 0,
df/dn= 0, df/dn̄= 0):

|p4| sin θ−M cos (θ− θm) = 0,
|p4| cos θ−µ+M sin (θ− θm)−T ln

(
n−1− 1

)
= 0,

|p4| cos θ+µ+M sin (θ− θm)−T ln
(
n̄−1− 1

)
= 0,

(11)

where we denoted the induced quark mass as

M(p) = 2G

∫
dq

(2π)3
(1−n′− n̄′) sin (θ′− θ′m) I(p+q).

(12)
Turning to the presentation of the obtained results in

the form customary for the mean-field approximation, we
introduce a dynamical quark mass Mq parameterized as

sin(θ− θm) =
Mq

|P4|
, |P4|= (p2+Mq(p))1/2,

and ascertain the interrelation between induced and
dynamical quark masses. From the first equation of
system (11) we fix the pairing angle sin θ= pM/(|p4||P4|)
and, making use of the identity

(|p4|2−Mm)2+M2p2 = [p2+(M −m)2] |p4|2,

find out that

cos θ=±|p4|
2−mM
|p4||P4|

.

For clarity we choose the upper sign “plus”. Then, as
the analysis of the NJL model teaches us, the branch of
equation solution for negative dynamical quark mass is
the most stable one. Let us recall here that we are dealing
with the Euclidean metrics (though it is not a principal
point) and the quark mass appears in the corresponding
expressions as an imaginary quantity. Now substituting
the calculated expressions for the pairing angle into the
trigonometrical factor expression

sin (θ− θm) = sin θ
p

|p4|
− cos θ m|p4|

,
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and performing some algebraic transformations of both
parts of the equation, we come to determine

Mq(p) =M(p)−m.

And, in particular, the equation for the dynamical quark
mass, eq. (12), takes the form characteristic for the mean-
field approximation:

M = 2G

∫
dq

(2π)3
(1−n′− n̄′)

M ′q
|P ′4|

I(p+q).

The second and third equations of system (11) allow us
to find for the equilibrium densities of quarks and anti-
quarks as n= [eβ(|P4|−µ)+1]−1, n̄= [eβ (|P4|+µ)+1]−1,
and, hence, the thermodynamic properties of our system
as well, in particular, the pressure of the quark ensem-
ble, P =−dE/dV . By definition we should calculate
this derivative at constant mean entropy, dS̄/dV = 0.
This condition allows us, for example, to calculate the
derivative dµ/dV . However, this way is not reliable
because then the mean charge Q̄4 might change, and it
is more practical to introduce two independent chemical
potentials —for quarks µ and for antiquarks µ̄ (following
formula for n̄ with an opposite sign). In fact, it is the
only possibility to obey both conditions simultaneously.
It leads to the following definitions of corresponding
densities: n= [eβ(|P4|−µ)+1]−1, n̄= [eβ (|P4|+µ̄)+1]−1. In
fact, this kind of description makes it possible to even
treat some non-equilibrium states of quark ensemble
(but with losing a covariance similar to the situation
which takes place in electrodynamics while one deals with
electron-positron gas). But here we are interested in the
particular case of µ̄= µ. The corresponding derivative of
specific energy dw/dV might be presented as

dw

dV
=

∫
dp

(2π)3

(
dn

dµ

dµ

dV
+
dn̄

dµ̄

dµ̄

dV

)

×
[
|p4| cos θ− 2G sin (θ− θm)

×
∫
dq

(2π)3
sin (θ′− θ′m) (n′+ n̄′− 1)I

]
. (13)

Now expressing the trigonometric factors via dynamical
quark mass and exploiting eq. (12) we have for the
ensemble pressure

P =−E
V
−V 2Nc

∫
dp

(2π)3

(
dn

dµ

dµ

dV
+
dn̄

dµ̄

dµ̄

dV

)
|P4|.

The requirement of mean charge conservation,

dQ̄4
dV
=
Q̄4

V
+V 2Nc

∫
dp

(2π)3

(
dn

dµ

du

dV
− dn̄
dµ̄

dµ̄

dV

)
= 0,

provides us with an equation which interrelates the deriv-
atives dµ/dV , dµ̄/dV . Apparently, here the regularized
expression for mean charge of quarks and antiquarks is

meant. Acting in a similar way with the requirement of
mean-entropy conservation, dS̄/dV = 0, we obtain another
equation as

S̄

2NcV 2
= −

∫
dp

(2π)3
dn

dµ
ln(n−1− 1) dµ

dV

+

∫
dp

(2π)3
dn̄

dµ̄
ln(n̄−1− 1) dµ̄

dV
.

Substituting here T ln(n−1− 1) =−µ+ |P4| and
T ln(n̄−1− 1) = µ̄+ |P4| after simple calculations (keep-
ing in mind that µ̄= µ) taking into account charge
conservation we have that∫
dp

(2π)3

(
dn

dµ

dµ

dV
+
dn̄

dµ̄

dµ̄

dV

)
|P4|=−

S̄T

2NcV 2
− Q̄4µ

2NcV 2
.

Finally we get for the pressure the following expression:

P =−E
V
+
S̄T

V
+
Q̄4µ

V
,

(of course, the thermodynamic potential is Ω=−PV ). At
small temperatures the antiquark contribution is negligi-
ble, and the thermodynamic description can be grounded
on utilizing one chemical potential µ only. If the anti-
quark contribution is getting intrinsic, the thermodynamic
picture becomes complicated due to the presence of the
chemical potential µ̄ with the condition µ̄= µ imposed.
In particular, at zero temperature the antiquark contribu-
tion is absent and we might obtain P =−E +µρq, where
µ= [P 2F +M

2
q (PF )]

1/2, PF is the Fermi momentum and
ρq =N/V is the quark ensemble density.
For clarity, we consider mainly the NJL model [1] in

this paper, i.e. the correlation function behaves as the
δ-function in the coordinate space. It is a well-known
fact that in order to have an intelligent result in this
model one needs to use a regularization cutting the
momentum integration in eq. (10). We adjust the standard
set of parameters [7] here with |p|<Λ, Λ= 631MeV,
m= 5.5MeV and GΛ2/(2π2) = 1.3. This set of parameters
at n= 0, n̄= 0, T = 0 gives for the dynamical quark mass
Mq = 335MeV. In particular, it may be shown that the
following representation of the ensemble energy is valid at
the extremals of functional (10):

E = Evac+2NcV

∫ Λ dp

(2π)3
|P4|(n+ n̄),

Evac = 2NcV

∫ Λ dp

(2π)3
(|p4| − |P4|)+ 2NcV

M2

4G
.

It is easy to understand that this expression with the
vacuum contribution subtracted looks like the energy of
a gas of relativistic particles and antiparticles with mass
Mq, and coincides identically with that calculated in the
mean-field approximation.
Let us summarize the results of this exercise. So, we

determine the density of the quark n and the antiquark
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Fig. 1: The chemical potential µ (MeV) as a function of charge
density Q4 =Q4/(3V ) (in units of charge/fm3). The factor 3
relates the densities of quark and baryon matter. The top curve
corresponds to the situation of zero temperature. The curves
following downwards correspond to the temperature values
T = 10MeV, . . . , T = 50MeV in steps of 10MeV.

Fig. 2: The ensemble pressure P (MeV/fm3) as a function
of charge density Q4 at temperatures T = 0MeV, . . . , T =
50MeV in steps of 10MeV. The lowest curve corresponds to
zero temperature. The dashed curve shows the boundary of
liquid-gas phase transition, see the text.

n̄ quasi-particles at given parameters µ and T from the
second and third equations of system (11). From the first
equation we get the angle of quark and antiquark pairing,
θ, as a function of dynamical quark mass Mq which is
handled as a parameter. The evolution of the chemical
potential as a function of charge density Q4 =Q4/(3V )
(in units of charge/fm3) with increasing temperature
is depicted in fig. 1 (factor 3 relates to the quark and
baryon matter densities). The top curve corresponds
to zero temperature. The other curves following down-
wards have been calculated for the temperatures T =
10MeV, . . . , T =50MeV in steps of 10MeV. As was
found in ref. [5] the chemical potential at zero tempera-
ture increases first with increasing charge density, reaches
its maximal value, then decreases and at densities of the

Fig. 3: The fragments of isotherms figs. 1, 2, see text. Chemical
potential µ (MeV) as a function of pressure P (MeV/fm3).
The top curve corresponds to the zero isotherm and following
downwards in steps of 10MeV till the isotherm 50MeV (the
lowest curve).

order of normal nuclear matter density1, ρq ∼ 0.16/fm3,
becomes almost equal to its vacuum value. Such a
behaviour of the chemical potential results from the
fast decrease of dynamical quark mass with increasing
Fermi momentum. It is clear from this figure that the
charge density is still a multivalued function of the chem-
ical potential at a temperature slightly below 50MeV.
Figure 2 shows the ensemble pressure P (MeV/fm3) as
a function of charge density Q4 at several temperatures.
The lowest curve corresponds to zero temperature. The
other curves following upwards correspond to temper-
atures T = 10MeV, . . . , T = 50MeV (the top curve)
in steps of 10MeV. It is interesting to recall now that
in ref. [5] the vacuum pressure estimate for the NJL
model was obtained as 40–50MeV/fm3 which is entirely
compatible with the results of the conventional bag
model. Besides, some hints of instability presence (rooted
in the anomalous behavior of pressure dP/dn< 0) in an
interval of the Fermi momenta has been found. Figure 3
shows the fragments of isotherms of figs. 1, 2 but in
different coordinates (chemical potential–ensemble pres-
sure). The top curve is calculated at zero temperature,
the other isotherms following downwards correspond to
temperatures increasing in steps of 10MeV. The lowest
curve is calculated at a temperature of 50MeV. This
figure obviously demonstrates the presence of states on
the isotherm which are thermodynamically equilibrated
and have equal pressure and chemical potential (see the
characteristic Van der Waals triangle with the crossing
curves). The calculated equilibrium points are shown in
fig. 2 by the dashed curve. The intersection points of a
dashed curve with an isotherm are fixing the boundary
of the gas-liquid phase transition. The corresponding
straight line P = const, which obeys the Maxwell rule,
separates the non-equilibrium and unstable fragments

1At Fermi momenta of dynamical quark mass order.
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Fig. 4: The dynamical quark mass |Mq| (MeV) as a
function of chemical potential µ (MeV) at the temperatures
T = 0MeV, . . . , T = 100MeV in steps of 10MeV. The right-
most curve corresponds to zero temperature.

of the isotherm and describes a mixed phase. The
corresponding critical temperature for the parameter we
are using in this paper turns out to be Tc ∼ 45.7MeV
with the critical charge density as Q̄4 ∼ 0.12 charge/fm3.
Usually the thermodynamic description is grounded on
the mean energy functional which is the homogeneous
function of particle number like E =Nf(S/N, V/N)
(without vacuum contribution). It is clear that such a
description requires the corresponding subtractions to be
introduced, however, this operation does not change the
final results considerably. It was argued in ref. [5] that
the states filled up with quarks and separated from the
instability region look like “natural construction mater-
ial” to form the baryons and to understand the existing
fact of equilibrium between vacuum and octet of stable
(in strong interaction) baryons2. The dynamical quark
mass |Mq| (MeV) as a function of chemical potential
µ (MeV) is presented for the temperatures T = 0MeV,
. . . , T = 100MeV in steps of 10MeV in fig. 4. The
rightmost curve corresponds to zero temperature. At low
temperatures, below 50MeV, the dynamical quark mass
is the multivalued function of the chemical potential.
Apparently, our study of the quark ensemble thermody-

namics produces quite reasonable arguments to propound
the hypothesis that the phase transition of chiral symme-
try (partial) restoration has already been realized as the
mixed phase of physical vacuum and baryonic matter3.
However, it is clear our quantitative estimates should
not be taken as ones to be compared with, for exam-
ple, the critical temperature of nuclear matter which has
been experimentally measured and is equal to 15–20MeV.
Besides, the gas component (at T = 0) has nonzero density
(as 0.01 of the normal nuclear density) but in reality this
branch should correspond to the physical vacuum, i.e. zero

2The chiral quark condensate for the filled-up state discussed
develops a quantity of about (100MeV)3 (at T = 0), see [5], that
demonstrates the obvious tendency of restoring a chiral symmetry.
3An indirect confirmation of this hypothesis one could see, for

example, in the existing degeneracy of excited baryon states, ref. [8].

baryonic density4. In principle, an idea of global equilib-
rium of gas and liquid phases makes it possible to formu-
late the adequate boundary conditions at describing the
transitional layer arising between the vacuum and filled
state and to calculate the surface tension effects. We are
planning to consider these aspects of phase transition in a
separate paper.
As a conclusion we would like to emphasize that in the

present paper we demonstrated how a phase transition of
liquid-gas kind (with reasonable values of the parameters)
emerges in the NJL-type models in which the quarks
are considered as the quasi-particles of the model Hamil-
tonian with four-fermion interaction. The constructed
quark ensemble displays some interesting features for the
nuclear ground state (for example, the existence of a state
degenerate with the vacuum one) but needs further study
of its role in the context of the existing research [9] activ-
ity to explore the complicated (or, may be, more realistic)
versions of the NJL model and knowledge of the QCD
thermodynamics as obtained in the lattice simulations.
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