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Abstract – It is shown that by a proper design of the nonlinearity it is possible to obtain
linear superposition of matter waves in optical lattices. In particular, the possibility to create
non-stationary states of Bose-Einstein condensates which are linear superposition of stationary
nonlinear matter waves is demonstrated. This is achieved by means of spatial variation of the
interatomic interaction which suppresses the nonlinear overlapping terms, which otherwise would
destroy the superposition, and at the same time retaining all the nonlinearity necessary for each
component state to exist. The superposition state is shown to be long lived and can be split into
constituent parts by accelerating the lattice.

Copyright c© EPLA, 2011

It is well known that the superposition principle, a key
postulate of quantum mechanics, when applied to the
macroscopic scale leads to bizarre paradoxes such as the
one discussed by Schrödinger in [1] to illustrate the fuzzy
correspondence between micro- and macro-worlds. It is
also well known, that for interacting quantum many-body
systems, like for example a diluted gas of bosons in an
optical lattice (OL), the Heisenberg equations of motion
for the field operators are nonlinear [2], this leading in
the mean-field approximation to a nonlinear Schrödinger
equation (NLSE), also known as Gross-Pitaevskii equation
(GPE) [3], for the time evolution of the ground state of a
Bose-Einstein condensate (BEC). Thus, the superposition
principle is lost in the step from quantum to classical
behavior achieved by averaging out the quantum fluc-
tuations in the system. The nonlinearity of the classical
equations well correlates with the idea of Einstein about
macrorealism according to which macroscopic objects
should follow classical laws, this ruling out for them the
possibility to be in superposition states.
Macrorealism, however, is presently questioned by a

series of experiments showing that macroscopic objects,
such as a micrometer-sized superconducting circuit, can
exist in linear superpositions of distinct states, following

(a)E-mail: bludov@fisica.uminho.pt

apparently the rules of quantum mechanics [4]. It should
be remarked, however, that the existence of macroscopic
superpositions does not necessarily contrasts with the laws
of classical mechanics, this being particularly true for
systems for which a superposition principle can be made
to exist even in the presence of nonlinearity.
The aim of this letter is to investigate such a possibility

by taking as an example the case of a BEC loaded in an
OL. More specifically, we show that by allowing spatial
periodic modulations of the interaction (scattering length)
in the GPE it is possible to create linear superpositions of
matter waves which are stable on a very long time scale.
The nonlinearity modulation can be achieved by means
of the optical Feshbach resonance technique [5] providing
what is known as nonlinear optical lattice (NOL). NOLs
have been recently realized in experiments [6] and have
been theoretically shown to lead to a series of interesting
phenomena in the mean-field nonlinear regime, such as
long-living Bloch oscillations [7], dynamical localization [8]
and Rabi oscillations [9] of gap solitons (GSs).
Spatial variations of the nonlinearity have also been

used to study adiabatic changes of bright and dark
solitons in parabolic traps [10], existence and stability of
solitons in pure NOLs [11] and in combined linear and
nonlinear lattices [12], mathematical properties of the
ground state [13] and stabilization of higher modes in a
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parabolic trap [14], Lie symmetries and canonical transfor-
mations mappings to homogeneous nonlinear Schrödinger
equation [15], delocalizing transitions in one-dimensional
OL [16], soliton stabilization in presence of linear
OLs [12,17]. The success of these investigations suggests
to use NOLs to eliminate (or strongly suppress) the
interaction between two different states to be put in
superposition, while keeping the nonlinearity necessary
for each component state to exist. We show that when
this condition is realized the superposition state displays
the typical interference term and becomes stable on a
very long time scale.
We use as a model equation for a BEC in a linear

π-periodic OL −V cos(2x), in the presence of a time-
dependent force F(t) (acceleration of the OL) and a
space-dependent nonlinearity G(x), the following one-
dimensional GPE written in dimensionless form as

i
∂ψ

∂t
=−∂

2ψ

∂x2
−V cos(2x)ψ+F(t)xψ+G(x)|ψ|2ψ. (1)

Here energies (like OL amplitude V ) are measured in units
of the recoil energy ER = �

2π2/(2md2) (where m is the
atomic mass and d is the OL period), while the space x and
time t are measured in units of d/π and �/ER, respectively.
The wave function ψ(x) is normalized to a2⊥π

2/(4d2|as|),
with a⊥ the transverse (in the (y, z)-plane) oscillator
length and as the average scattering length. Besides BEC,
eq. (1) is also a well-known model for the propagation
of light in periodically modulated media (see [18] for a
recent review) and for the propagation of weak light beams
through a gas of three level atoms [19]. In this context,
ψ describes the dimensionless field amplitude, while x
and t denote transversal and longitudinal coordinates
and the above problem transforms into the search of
a periodic modulation of the nonlinearity assuring the
strong suppression of the cross-phase modulation of the
beams bordering edges of the same band gap.
Let us consider a linear superposition of two solutions

ψe = φe(x)e
−iµet and ψo = φo(x)e

−iµot of eq. (1) with
F(t)≡ 0, of the form

ψ(x, t) =ψe(x, t)+ e
iΘψo(x, t). (2)

Here φe(x) = φe(−x) and φo(x) =−φo(−x) denote even
and odd solutions of the stationary GPE:

µe,oφe,o =−d
2φe,o

dx2
−V cos(2x)φe,o+G(x)|φe,o|2φe,o,

(3)
with corresponding chemical potentials, µe,o, bordering
opposite edges of the same band gap. The existence
of such solutions can be assured by a proper design
of G(x) [9,12], assumed in the following to be an even
function of x: G(x) = G(−x). Since φe,o(x) have constant
phases, they can be taken to be real, with the relative
phase Θ in (2) accounting for possible phase mismatches.
Having opposite symmetries, the nonlinear states φe,o(x)

are automatically orthogonal
∫
φe(x)φo(x)dx= 0. The

Hamiltonian of eq. (1) with F(t)≡ 0

H =

∫ ∞
−∞

[∣∣∣∣∂ψ∂x
∣∣∣∣
2

−V cos(2x) |ψ|2+ G(x)
2
|ψ|4
]
dx (4)

for the superposition state (2) can be written as H =
He+Ho+Hint(t), with terms He,o corresponding to the
Hamiltonian of solutions ψe,o(x, t):

Hα =

∫ ∞
−∞

[(
dφα
dx

)2
−V cos(2x)φ2α+

G(x)
2

φ4α

]
dx,

(with the subscript α standing for e, o) and with

Hint(t) =
{
2 cos2 [(µe−µo)t−Θ]+1

}
×
∫ ∞
−∞
G(x)φ2e(x)φ2o(x)dx (5)

characterizing the nonlinear interaction between the solu-
tions. The superposition state (2) is not a solution of the
GPE, what is manifested in the Hamiltonian with the
presence of the interaction term Hint(t). One can make
the superposition state to be a remarkably good approx-
imation to an exact solution by taking the nonlinearity
function G(x) so to kill the interaction term (5) and satis-
fying at the same time the requirement for the effective
nonlinearities at the gap edges to have opposite signs. This
amounts to taking G(x) that satisfies the conditions∫ ∞

−∞
G(x)φ2e(x)φ2o(x)dx= 0, (6a)

[∫ ∞
−∞
G(x)φ4e(x)dx

]
×
[∫ ∞
−∞
G(x)φ4o(x)dx

]
< 0. (6b)

A remarkable fact is that these conditions can be satisfied
even with a simple cos-like spatial dependence of the
nonlinearity. In the following we take G(x) to be of the
form G(x) = σ+G1 cos(2x), with σ=±1.
We remark that besides cos-like potentials our approach

can be used for any potential leading to two-level systems
with controllable interactions, such as vector-like or multi-
component NLS solitons with spatial sign-varying nonlin-
earity. The choice of OLs here resides in the fact that GSs
are well established objects both in BEC and in nonlin-
ear optics and techniques for their manipulations are well
developed so that experimental implementations of the
superposition state become feasible (see below).
By properly choosing the amplitude G1 (see fig. 1(a))

one can provide the condition Hint(t)≡ 0 for a wide range
of chemical potentials µe, µo. A particular example of even
and odd GSs with chemical potentials belonging to the
lowest band gap, is illustrated in fig. 1(a). We remark
that not all the possible GSs are dynamically stable.
Specific examples of stable GSs are shown in figs. 1(b)–(e).
The predicted stability of the linear superposition of the
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Fig. 1: (Color online) (a) Amplitude of the nonlinear lattice
G1 vs. chemical potential µe of an even GS which ensures
the conditions (6) for V = 3, and σ=−1. Panels (b)–(e) show
pairs of stable GSs at the corresponding points of panel (a) for
µo = 2.15. In (b) and (c) even and odd GSs at G1 = 3.0373 with
the parameters µe =−0.72, Ne = 0.13 and No = 0.32. In (d)
and (e) even and odd GSs at G1 = 6.0623 with the parameters
µe = 0, Ne = 0.51, and No = 0.213. The first lowest gap is
µ∈ (−0.7332, 2.1651). The quantities No,e are defined in (7).

GSs, shown in figs. 1(b), (c), is confirmed by numerical
integration of GPE (1) with F(t) = 0.
To this end we used in all numerical simu-

lations perturbed initial conditions of the form:
(1+0.1 cos(21x))ϕ with ϕ denoting the unperturbed
superposition solution. Stability was also checked by
using unperturbed initial conditions but with a noisy
modulations of the nonlinearity (see fig. 4). The resulting
projections of the wave function ψ(x, t) on the stationary
solutions, i.e.

ce,o(t) =
1

Ne,o

∫ ∞
−∞

ψ(x, t)φe,o(x)dx, (7)

where Ne,o =
∫∞
−∞ φ2e,o(x)dx are numbers of atoms in the

even and odd GSs, are depicted in fig. 2(a) (notice that
ce,o(t) describe numbers of atoms in the GS state, rather
than total populations of the respective energy levels, and
as such they are only normalized by the initial conditions
ce(0) = co(0) = 1). One observes that the square modula
of the projections are approximately equal to unity (the
difference is less than 0.2%) during the relatively long
integration time.
From numerical simulations it follows that for small-

amplitude GSs the stability of the superposition is less
sensitive to variations of the amplitude G1. In particular,
when the nonlinearity amplitude is bigger than the opti-
mal one, the superposition state can survive even under
relatively large G1 (see fig. 2(c)). For nonlinearity ampli-
tudes below the optimal value the superposition state is
destroyed only after the nonlinearity is reduced by a factor
∼ 2/3 of its optimal value (see fig. 2(b) and inset). The
stability of linear superpositions of large-amplitude GSs,
however, is much more sensitive to nonlinearity ampli-
tude changes (cf. figs. 2(c) and (f)). In particular from
fig. 2(d) we see that while the linear superposition of a
large-amplitude even GS and a small-amplitude odd GS

Fig. 2: (Color online) Time evolution of the projections |ce|2
and |co|2 for V = 3, σ=−1, and G1 = 3.0373 (a), G1 = 2.0
(b), G1 = 10.0 (c,f), G1 = 6.0623 (d), G1 = 2.5 (e). The initial
conditions are taken as in (2) with Θ= 0 and with the chemical
potentials of the odd and even GSs given by: µo = 2.15,
µe =−0.72 (a)–(c), µe = 0 (d)–(f). The inset in (a) shows
the time evolution of the particle density |ψ(x, t)|2 at x=
π/10 as obtained from the numerical integration of the GPE
(solid lines, parameters are the same as in panel (a)), and from
eq. (8) (dashed lines). Insets in panels (b), (c) and (e), (f) show
the destruction of the superposition in the coordinate space.

(depicted in figs. 1(d), (e)) can be stable, for an improper
choice of the nonlinearity amplitude the superposition
state is quickly destroyed (figs. 2(e), (f) and insets).
These different behaviors can be explained by observing

that for G1� 1 one has that G(x)≈G1 cos(2x) so that
the condition eq. (6a) is practically always satisfied for
small-amplitude GSs because, being such solutions very
extended, the function |φe(x)φo(x)|2 is effectively averaged
to zero after multiplication by G(x). This is not the case for
big-amplitude GSs whose linear superpositions are much
more sensitive to the nonlinearity amplitude variations
because, being the solutions more localized, the averaging
out is less effective. Notice from eq. (2) that the total
density ρ(x, t) = |ψ(x, t)|2 can be written in terms of the
stationary densities ρe,o(x) = φ

2
e,o(x) as

ρ(x, t) = ρo(x)+ ρe(x)+ 2φo(x)φe(x) cos[(µo−µe)t+Θ]
(8)

with the time-dependent term in the right-hand side
representing the contribution due to the interference.
Also notice that the interference term disappears both
if averaged on time (denoted by 〈·〉 in the following)
or integrated on space, this giving 〈ρ〉= ρo+ ρe and
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N =No+Ne, respectively. This has to be complemented
with the energy conservation written in the form 〈H〉=
〈Ho〉+ 〈He〉.
In the inset in fig. 2(a) we have compared the time

evolution governed by eq. (8) with the one obtained
directly from the integration of the GPE (1) with F(t) = 0.
One can clearly see that even on a long time scale the
discrepancy between the numerical density profile of the
superposition-state and the one obtained from eq. (8)
is remarkably small. In order to observe the density
fluctuations induced by the interference term one should
be able to measure variations of the density profile of
the superposition state on a time scale of the order of
the period of the oscillation T = 2π/(µo−µe). For the
parameters used in figs. 2(a) and (c) this time is T ≈ 2
and T ≈ 3, correspondingly. This time, however, can be
made longer by suitably designing the linear OL to reduce
the width of the first gap.
Let us now discuss how the superposition of GSs could

be created in a BEC experiment. To this regard we
remark that GSs with negative effective masses (repulsive
interactions) at the edge of the Brillouin zone have already
been created [20]. For repulsive interactions the GSs can
exist only near the top edges of the bands. On the other
hand, it has been theoretically demonstrated in [7] that
a proper periodic modulation of the scattering length in
space makes it possible to have stable GSs near both
top and bottom edges of the first and second band,
respectively. A GS near the bottom edge of the second
band can be produced by transferring a first band GS
to the second band by means of an half-cycle of Rabi-
oscillation as discussed in [9]. This implies that by starting
from two spatially separated GSs of the same band and by
tunneling one of them to the second band, two spatially
separated stationary GSs with chemical potentials located
near the opposite edges of the first band gap can be
created. These states will obviously have opposite effective
masses and opposite spatial symmetries (one odd and
the other even) and by construction they result to be
orthogonal. After this preparation, the next problem is to
put the states into a linear superposition. This can be done
by observing that by knowing the positions of the even
and odd GSs in the OL one can design a time-dependent
force (e.g. lattice accelerations) to bring them in the
same intermediate position so to form the macroscopic
superposition. In this respect we recall that the effect
of the external force F(t) on the GS dynamics is well
described by the semiclassical equation of motion [7,8]:
dx/dt= v(q)≡ dE(q)/dq, dq/dt=−F(t), where x and q
denote the GS centers in real and in reciprocal spaces,
respectively, v(q) is the Bloch velocity. To create the
superposition state one can use a time-dependent force
of the form

F(t) =


γ, t < t1,
0, t1 � t < t2 and t� t2+ t1,
−γ, t2 � t < t2+ t1.

(9)

Fig. 3: (Color online) (a) Spatio-temporal evolution of the
even and odd GSs initially located at x= 7π and x=−30π,
respectively, under the action of the external force (9) with
γ =−0.001, and times t1 = 100, t2 = 200, tstop = 300 which are
indicated by the vertical lines. (b) Time evolution of the projec-
tions on the initial states during the superposition formation.
The parameters of the solitons, OL, and nonlinearity are the
same as in fig. 2(a).

From the equation of motion it follows that the two
spatially separated GSs, during the time t1 will accel-
erate towards each other, due to their opposite effective
masses. In the time interval t1 � t < t2, when the external
force is switched off, the even and odd GSs will move with
constant velocities given by ve =dE1(q= 1− γt1)/dq and
vo =dE2(q= 1− γt1)/dq, respectively, while in the inter-
val t2 � t < t2+ t1, their velocities gradually decrease to
zero (due to equality of absolute values of external forces
at accelerating and decelerating intervals and equal dura-
tions of these intervals) and at the time tstop = t2+ t1 the
solitons will become stationary. If the initial distance
between the GSs is

∆x = 2[E2(1− γt1)−E1(1− γt1)−E2(1)+E1(1)]
+ (|ve|+ |vo|)(t2− t1),

at t= tstop their centers will coincide, and by switching off
the force from this time on, a stable linear superposition
of the two GSs will be formed.
The described process is illustrated in fig. 3(a) for soli-

tons initially separated by a distance ∆x= 37π. Notice
that once the superposition is formed it remains stable for
long time, without any apparent loss of matter and with
the number of atoms preserving the relation N =Ne+No
in time. This is also evident from fig. 3(b) where the
projections of the state along the even and odd compo-
nents are depicted during the time process of state
formation and after. We see that the projections rapidly
approach the unity as the states become closer and prac-
tically coincide with 1 when the superposition is formed.
The possibility to create superpositions in a noisy envi-
ronment and the structural stability of the superposition
state has been ensured by adding a uniformly distributed
random perturbation of zero average to the nonlinearity
function. From figs. 4(a) and (b) we see that the superpo-
sition can still be formed in the presence of noise. We find
that at time tstop = 300, when external force is switched
off and superposition state is formed, projections deviate
from unity by less than 1.5% in fig. 4(a) and less than 3%
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Fig. 4: (Color online) (a,b) The same as in fig. 3(b) but with a
small random perturbation added to the nonlinearity G(x) =
−1+3.0373 cos(2x)+ aR(x, t), where a= 5 (a) or a= 10 (b) is
the amplitude of random noise, R(x, t) is the noise function,
uniformly distributed in the interval [−1, 1]. (c), (d) The same
as in fig. 3(b) but with a nonlinear dissipation added to the
nonlinearity G(x) =−1+3.0373 cos(2x)− iν, where ν = 0.001
(c) or ν = 0.1 (d) is the amplitude of dissipation. Insets in
panels (c), (d) show the spatio-temporal evolution of soliton
superposition in the dissipative BEC.

in fig. 4(b). Notice that in spite of the big amplitude of
the random noise, the linear superpositions destroys very
slowly with time.
An interesting question to ask is whether the super-

position state can be formed also in the presence of a
small dissipation. In this respect, we remark that a small
imaginary part of the scattering length can arise due
to spontaneous emission losses inherent to the optically
induced Feshbach resonance technique [21,22]. Such dissi-
pative effects can be strongly reduced by using laser fields
with sufficiently high intensity and detuned from the reso-
nance. In particular, it has been shown that by using a
laser light near the resonance with a molecular bound-to-
bound transition in 87Rb BEC it is possible to shift the
value of the magnetic field where the Feshbach resonance
occurs and to vary the scattering length on the optical
wavelength scale with a considerable loss reduction (about
two orders of magnitude lower than usual Feshbach exper-
iments) [23].
The effect of a small dissipation on the superposition

state has been investigated by adding a small imaginary
component to the nonlinearity function in the GPE, i.e.
by taking G(x) = σ+G1 cos(2x)+ iν, with σ=±1 and
ν� 1. From panels (c), (d) of fig. 4 we see that in
this case the superposition state can still be formed
(although in non-optimal manner since at formation time
t= 300 projections |ce,o|2 slightly deviate from unity) and,
although slowly decaying (due to dissipation), it does not
lose its internal structure, i.e. the state remains in the
superposition during decay (cf. insets in figs. 4(c), (d)
with those in figs. 2(b), (e) where the superposition is

Fig. 5: (Color online) Spatio-temporal evolution of the even
and odd GS states initially located at x= 7π and x=−30π,
respectively, under the action of the external force F(t) =
−0.001, which is switched off at t= 10. The parameters of
solitons and the nonlinearity are the same as in respective
panels of fig. 2.

destroyed). For a small dissipation the decay occurs on
a time scale which is long enough for the superposition
state to be observed.
The possibility to control the soliton-soliton interaction

by means of spatial periodic modulations of the nonlinear-
ity is also demonstrated in fig. 5 by means of scattering
processes of two GSs with chemical potential bordering
opposite band gap edges. Figure 5(a) refers to the case
of an optimal design of the nonlinearity (i.e. the soliton-
soliton interaction is fully suppressed) while in fig. 5(b) we
show the case of scattering for a non-optimal design of the
nonlinearity. Opposite to fig. 5(b) (and to usual scattering
of solitons of integrable models), in fig. 5(a) no phase shift
of the scattered trajectories is visible, this being a conse-
quence of the total absence of interaction. In the case of
a non-optimal design, the interaction between the solitons
is evident from the strong perturbation of the trajectories
even for small interaction times (after the interaction the
velocities are practically unchanged but there is a visible
shift of the trajectories which is larger for the GS with the
smaller effective mass).
The obtained results can be generalized to other nonlin-

ear solutions of the GPE. As an example we consider the
case of periodic matter waves whose chemical potentials
belong to the first (the periodic waves are even) or to the
second (the periodic waves are odd) bands of the OL spec-
trum. Similarly to the GS case, the condition Hint(t)≡ 0
can be achieved also for periodic waves with the only
difference that now Hint is given by eq. (5) with the inte-
gration over the whole real axis is replaced by the inte-
gration over the unit cell [−π/2, π/2] and the number of
particles per unit cell are given by Ne,o =

∫ π/2
−π/2 φ

2
e,o(x)dx.

An example is shown in fig. 6(a), where we consid-
ered a repulsive averaged nonlinearity (σ= 1) and a π-
shifted nonlinearity modulations (expressed by a negative
amplitude: G1 < 0). Similarly to the GS case, among odd
periodic waves only low-amplitude ones are stable, corre-
sponding in fig. 6(a) to the branch µo = 2.2 only. The
possibility to create stable superposition state of periodic
waves, shown in figs. 6(b) and (c), is confirmed by fig. 6(d).
Similar results are expected to apply also to dark solitons
and multi-soliton solutions.
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Fig. 6: (Color online) (a) Amplitude of the nonlinearity G1
vs. even periodic wave chemical potential µe, which provides
the conditions Hint ≡ 0 in the case of OL amplitude V = 3,
nonlinearity average value σ= 1 and different odd periodic
wave chemical potentials. (b), (c) Periodic wave shapes at
corresponding points of panel (a) for parameters µe =−1.3,
G1 =−2.7, Ne = 0.74 (b); µo = 2.2, G1 =−2.7, No = 0.056 (c).
(d) Time evolution of the projections |ce|2, |co|2, obtained from
the numerical integration of GPE (1) with F(t) = 0 and with
initial condition taken as the linear superposition (2) with
Θ= 0, of the periodic waves depicted in panels (b), (c).

An estimate of the parameters for a BEC experimental
observation of the superposition can be made by referring
to a 7Li condensate in a trap with a⊥ = 2µm, d= 1µm
and with 〈as〉=−2 nm, created by an optically induced
Feshbach resonance. The linear superposition depicted in
fig. 2(a) can be achieved by putting ≈200 atoms (this
corresponding to Ne = 0.13) in the even soliton and ≈500
atoms (this corresponding toNo = 0.32) in the odd soliton,
provided the amplitude of modulation of the scattering
length is ∼6.075 nm (corresponding to G1 = 3.0373). The
way of creation of the superposition state, presented in
fig. 3, can be realized during ∼ 6.75ms (this corresponds
to tstop = 300), using an external force 1.474 · 10−26N (for
which γ = 0.001) applied to the pair of solitons, initially
separated by 37µm.
In conclusion we have shown that it is possible to

control the interaction between two stationary solution
characterized by opposite parity of the Gross-Pitaevskii
equation (or in more general contexts by the nonlinear
Schrödinger equation with periodic coefficients) by means
of spatially dependent nonlinear interactions. We showed
that this permits to eliminate (or strongly suppress)
the interaction (cross-phase modulation in an optical
context) between GSs bordering opposite edges of a band
gap, and to create stable linear superpositions of them
which survive for very long times. This results in the
effective decoupling of the dynamics of the two states
and offers the possibility to efficiently manipulate them
as linear objects. We showed that superposition states
are remarkably robust against perturbations and can exist
even in the presence of a small dissipation, a fact which
should make them be observed in real experiments, both
with matter waves and with light propagation in nonlinear
optical waveguide arrays.
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