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Abstract – The pair electron-ion collisions operator in strong electromagnetic fields is considered.
In strong EM fields, the collision operator is derived allowing for the complex stochastic particle
dynamics at the scattering. The resulting expression can be conditionally separated into the
diffusion part (having a Landau-like operator form) and the fast-particle source.
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Collisions play a fundamental role in plasma. They
determine the form and evolution of the distribution
function and, as a consequence, instabilities of any kind,
the emission and the heating of plasma. The significance of
collisions can be hardly overestimated. In this connection,
a question arises about the form of the collision operator
in different conditions. Note that one needs to know
not only the collision frequency, heating rate and so on,
but also the kinetic properties of electron-ion collisions
in strong laser fields. This becomes very important for
strong electromagnetic (EM) fields, because the heating
rate does not decrease for the high field intensity [1–3].
At this, direct calculations of the laser-plasma interaction
by particle-in-cell (PIC) simulations could not take into
account electron-ion collisions correctly due to a too big
difference between the spatio-temporal scales of collisions
and the scales of the plasma density or the wave pulse [4].
In principle, the particle tree code [5] can account for
the exact particle-particle Coulomb interaction at small
distances, while it uses approximate multipole interactions
of various orders at larger distances. But this may require
extensive computer power and calculation time. However,
the collision operator can be found analytically for strong
fields and exactly this procedure is presented in our paper.
The collision operator in plasma in weak electrical

and magnetic fields is well known [6]. It is the collision
operator in the Landau form based on the idea that the
main contribution to the overall scattering is made by
distant collisions of particles with small-angle scattering.
In this case, the particle drift motion may be regarded as
an almost straight line. Thus, the collision operator can
be easily found with logarithmic accuracy. The resulting
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logarithmic factor (“Coulomb logarithm”) includes limita-
tions imposed on the minimal and maximal ion distances
(scattering on large angles or quantum effects, and collec-
tive effects or adiabatic motion in the wave field, respec-
tively). Therefore, one can assume that the scattering is
small-angled. Obviously, the approximation of straight-
line drift trajectories is broken at small values of the loga-
rithmic factor and a more complicated problem about
the exact variation of particle momentum during the
scattering should be considered.
Unfortunately, difficulties are also associated with

electron-ion collisions in strong fields [1,7]. Seemingly, the
logarithmic factor is formally great, and collisions may
be regarded as small-angled. However, because of the
attracting character of the electron-ion interaction with
sufficiently low electron drift momentum,

pT =
√
mTe/2� posc = eE/ω,

there are trajectories of scattering particles which cannot
be assumed to be a straight line. Here e,m, Te are electron
charge, mass and temperature, E and ω are the amplitude
and the frequency of the EM wave. Correspondingly, the
conditions of validity of the collision operator in the
Landau form are broken.
Indeed, if the field is sufficiently strong, so that the elec-

tron oscillation radius rosc is much longer than the charac-
teristic scattering scale (the Rutherford radius estimated
with respect to the oscillatory velocity)

bosc =
e2Z

mv2osc
� rosc = eE

mω2
, (1)

then the electron makes a lot of oscillations passing
the ion. During each pass, it scatters on a small angle,
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but during the period T = 2π/ω� tcoll ∼ bosc/vosc it
approaches the ion noticeably. As a result, each subse-
quent scattering becomes stronger than the previous
one, i.e., the effect is cumulative. Moreover, by virtue of
condition (1), a situation may occur, when the particle
with impact parameter ρ=

√
2πrE hits the ion exactly

after a period! Here, rE =
√
roscbosc =

√
eZ/E is the

characteristic non-linear scale of the scattering in strong
fields.
Moreover, particles also may hit the ion after

2, 3, . . . (vosc/v) passes, which leads to even stronger
intensification of all the characteristics of the scatter-
ing [1,2,7]. Thus, in strong fields rosc� bosc, the pattern
of collisions changes cardinally. In particular, the electron-
ion collision frequency proves to be much higher than the
collision frequency estimated within the approximation of
straight-line drift trajectories. Fast particles and coherent
emission start to be generated. Correspondingly, the
collision operator in strong fields should change too. This
paper is devoted to the derivation of the pair collision
operator in strong fields (1). Herein, we confine ourselves
to the consideration of non-relativistic collisions. However,
due to the Hamiltonian formalism used in this work,
practically all computations are extended identically to
the relativistic intensities of the EM fields.
Since the collisions in strong EM fields differ from those

in rather weak EM fields, we start the derivation from the
collision operator in the Boltzmann form [6,8] generalized
to the case of varying EM fields [9]. This operator can be
written in the form of the general integral operator

Stei[f ] =

∫
wei(p,p0)f(p0) d

3p0, (2)

affecting the electron distribution function f(p). Here we
assume that ions are heavy and the changes of their
velocities are negligibly small. The core wei of the colli-
sion operator can be rewritten as an integral along the
trajectories of test particles [9]. For example, its average
over the period of the EM field is equal to

〈wei(p,p0)〉=ni
T
lim
Ξ→−∞

Ξ+ζ∫
Ξ

∫
[δ(p+−p)− δ(p0−p)]dξ d2ρ0.

(3)

Here, ζ = 2π
ω
p0
m
is the distance travelled by the electron

over the period, p+(p0, r0) is the electron momentum after
the collision (at t→+∞) for the electron with initial para-
meters p0 and r0 = ρ0+ �(Ξ+ ξ), where �= p0/p0 and

ρ0 = r0−p0 (r0,p0)p20
are the vectors of the impact para-

meters in the plane perpendicular to the initial electron
momentum.
In fact, this is very similar to the derivation of the well-

known formula for the collision rate ν = nivσ [6]. But for
periodic EM field the collision rate should be additionally
averaged over the phase of the EM wave. Such averaging

can be rewritten as integration over the spatial layer with
thickness ζ:

ν(p0)≡
∫
p2

p2osc
wei d

3p=
ni

T
lim
Ξ→−∞

Ξ+ζ∫
Ξ

∫
p2+−p20
p2osc

dξ d2ρ0.

The term “test particles” means the particles
which satisfy the motion equation with Hamiltonian
H = p2/2m− e2Z/|r+ rosc(t)| or, in the laboratory
coordinates, H = p2/2m− e2Z/|R|+ eER. The first
expression is written in the drift coordinates for which
the particle momenta are constant during motion in
free space with the EM wave. The relation of the drift
and laboratory coordinates has a simple form in the
non-relativistic case:

R= r+ rosc, P = p+posc.

The same relation can also be found for the relativistic
case [10], but the expressions become more complicated.
In quantum mechanics, the drift coordinates used are
commonly called as Kramers-Henneberger frame [11].
Usually, one simplifies expressions (2), (3) assuming

that the momentum change during collisions is small
[6,8,9]. In this case, the resulting integrals can be inte-
grated analytically and the Landau form of the colli-
sion operator can be obtained. For small drift velocities
(p� posc, bosc� rosc), the electron dynamics is compli-
cated [1,2,7]. But even for these conditions, the collision
operator can be found using the results of [7].
Direct use of (3) is difficult due to the complicated,

stochastic form of the test particle trajectories. Expression
(3) should be simplified using some features of the particle
dynamics in strong fields. As was shown in [1,7], the
dynamics of such particles is the essential attraction to the
ion practically without any change in the absolute value
of the drift velocity; an abrupt “hard” ion impact; and an
escape from the region of the scattering.
The momentum of particles stays almost constant after

leaving the collision region. This allows one to replace
the final momentum p(t=+∞) with the value of the
momentum after the hard impact. Moreover, by replacing
the integration variable r0 by the coordinate before the
hard impact rc, one obtains

〈wei(p,p0, t)〉 = ni
T

∫
J(rc,p0) · (δ(p0−p)

−δ(p0+ δp̃+∆p−p)) d3rc. (4)

Here, δp̃ is the small variation in the particle momentum
at the stage of the ion attraction, J(rc,p0) is the Jacobian
of the transition from r0 to rc. Note that in the case of the
multi-flow character of the particle dynamics (as it is in
strong fields) the summation over the ambiguity regions
should be performed in the Jacobian. The value ∆p is the
momentum variation at the hard impact:

∆p=−
(
2ρmP/b

1+ ρ2/b2
+
2mP

1+ ρ2/b2

)
≈
ρ�b
−2mP ρ

ρ

b

ρ
, (5)
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where ρ=Rc−P (Rc,P )|P |2 and b= e
2Z/mP 2 are the impact

parameter before the hard impact and the Rutherford
radius determined by the total (laboratory) particle
momentum, respectively. As before, Rc, P are the total
coordinate and the momentum at the impact moment.
The expressions for ρ, P , which can be simplified in the
case of small velocities v� vosc, are considered for the
linearly polarized pumping wave:

P � z0posc(z), ρ� xx0+ yy0. (6)

Here we consider transparent plasmas ω2� ω2p =
4πe2n/m, which allows us [12] to use results of electron-
ion collisions in rare plasma [1,7]. Indeed, the following
relations are fulfilled in a transparent plasma:

rD =
v

ωp
� ra = v

ω
> rE� bosc.

So, one can neglect the Debye shielding too (which is
important at scales r� rD).
For the Jacobian evaluation, one can use the fact that

the physical meaning of the Jacobian is the particle
density presented in new variables, which has been found
earlier [10]. In the general case, the density for the linearly
polarized field can be written as

J(rc,p0) =

(
1+

p

posc

b(p0)

ρ

)
≈
ρ→0α(p0)

bosc

ρ
, (7)

α=
posc

p0
Θ(poscp0
poscp0

)� 1. (8)

Here α is the factor of the electron attraction anisotropy
depending on the initial electron momentum. Moreover, by
using the smallness of the variation in the particle velocity
at the attraction stage, one can set δp̃≈ 0. As a result, the
expression for the collision core has the form

〈wei〉= ni
T

∫
J(rc,p0)(δ (δp−∆p(rc,v0))− δ(δp))d3rc,

(9)
where δp= p0−p. Note, that formula (9) is similar to
the classical one [8,13], but it takes into account the
electron attraction (factor J(rc,p0)) during scattering in
the presence of a strong EM wave. Moreover, this factor
significantly changes the final expressions at strong EM
fields.
Such a neglect of the particle velocity variation is

insignificant for the consideration of the energy exchange
with the field. So, the characteristic variation of the
particle energy is comparable with or greater than the
initial particle energy (for example, for the description of
particles in the trailing edge of the distribution function).
However, it introduces significant errors in the transport
characteristics of the scattering, to which, as in weak fields,
distant small-angle collisions give the major contribution.
The expression of the collision core (9) is similar to

the form of eq. (3), but there is an important differ-
ence: an explicit multi-flowness is excluded from the inte-
grand. Indeed, formula (9) describes the multi-flow regime.

However, it is done implicitly, i.e., via the particle density
n(rc,v0) before the last impact. In this case, the density
should be calculated precisely allowing for complex
(stochastic) particle dynamics. One may find a simpler
way, e.g., write some approximation (7) for the density
before the last impact and use the fact that the value
J(rc) comes into the integrand and all approximation
errors will be “smoothed” during the integration.
Formally, the Landau-like term of the collision operator,

Stei =
∂

∂pi
Bij
∂f(p)

∂pj
,

for small-angle scattering can be derived from formula (9)
by the standard way [6,8,9] taking into account the
integrand factor J ∼ 1/ρ. This gives the coefficient Bij in
the form

Bij = ni

∫
αbosc

ρ
· ∂U
∂ri

∂U

∂rj

∣∣∣∣
rc→r0+vt

dtd3r=

2παnie
4Z2m

posc

(
δij − PiPj|P |2

)
·
∫
bosc dr

r2
�

π2αnie
4Z2m

posc

(
δij − PiPj|P |2

)
, (10)

where U = e2Z/r is the ion Coulomb potential. Formula
(10) contains the integral

∫
bosc dr/r

2 which is divergent
at the lower limit. The value of the Rutherford radius
estimated over the total velocity b≈ bosc has been taken
as the lower limit for its calculation, since it is the limit
of the expansion (5) of the momentum variation at the
scattering on small angles (r� b≈ bosc).
The form of tensor (10) is the only form of the simplest

differential operator which yields the correct expression for
the collision frequency in strong fields [1,7] in the approach
in which most of electrons scatter transversely to the wave
field. Note that exactly the same “diffusion” part is also
obtained for the instantaneous (not averaged over time)
collision operator. However, in this case the total particle
momentum P also depends on time.
However, the gain of the large-angle scattering is of the

same order as the small-angle one (this also was shown
in [1,7]). Indeed, let us apply the momentum method to
formula (9) using (5). The first-order momentum

d〈pi〉
dt
=
π2nie

4Z2αm

p3osc
· posc,i(t) = ∂Bij

∂pj
,

is the same as the one from (10). However, the second
momentum

d〈pipj〉
dt

=
π2nie

4Z2αm

posc
· (δij + δizδjz) �=Bij

already gives a relation being closer to the isotropic scat-
tering, whereas eq. (10) yields the scattering transverse to
the total (oscillatory) velocity.
Therefore, for an accurate (not evaluative) description

of the collisions, one should use operator (9). Let us
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Fig. 1: (Color online) Fourier representation (12) of the collision
operator core.

rewrite it in explicit form taking into account the phase
bunching [7] of test electrons at the phase of the oscillatory
velocity maximum:

〈wei〉 = voscni
2π

∫
J(rc,p0)

[
δ

(
δp⊥− 2poscboscρ

ρ2+ b2osc

)

·δ
(
δpz ± poscb

2
osc

ρ2+ b2osc

)
− δ(δp)

]
dxdy. (11)

Here, the± signs denote electron bunching near the phases
with the maximal values of the oscillatory momentum.
Of course such assumption is rather strong but it allows
us to derive the expression for the collision operator
explicitly and to give proper dependencies for heating rate,
hot electron distribution and others, which are in good
agreement with the results of numerical simulations.
Operator (11) can be simplified by its Fourier represen-

tation

wκ(p0) =

∫
〈w(δp,p0)〉eiκδp/posc d3δp.

By replacing the variable ρ= bosc tan(ϕ/2), the double
integral (11) is made a single integral:

wκ = αν

π∫
0

J0(κ⊥ sinϕ) cos(κz(1+ cosϕ))− 1
1+ cosϕ

dϕ, (12)

where ν = voscnib
2
osc/2π. Unfortunately, we could not

perform integration (12) in the explicit form. The result
of the numerical integration of (12) is presented in fig. 1.
However, two important cases have analytical solutions.
The first case is the expansion at small κ:

wκ ≈−παν
4
(2κ2z +κ

2
⊥)+ . . . . (13)

This expansion corresponds to the diffusion in the momen-
tum space

Stei,dif =
∂2B̃ijf(p)

∂pi∂pj
(14)

and gives the collision operator in the diffusion form with
the coefficient (compare with (10))

B̃ij =
π2α(p)nie

4Z2m

4posc

(
δij +

posc,iposc,j

|posc|2
)
. (15)

The second case is the expansion at large κ⊥→∞.
Numerical integration shows a linear dependence here
(fig. 1). Actually, the second derivative of (12) is

d2wκ
dκ2⊥

= π
(
J21 (κ⊥/2)−J20 (κ⊥/2)

) →
κ⊥→∞

0.

This means that wκ is the linear function of κ⊥ at
κ⊥→∞. Moreover, one can show that (fig. 1)

wκ ≈
κ⊥→∞

2κ⊥.

Assuming this dependence and using the relation∫ ∞
0

r2J0(kr) dr=− 1
k3
,

one can find the approximate form of the collision operator
in strong EM fields:

〈wei〉 ≈
2ανδ(∆P‖/posc)

∆P 3⊥
. (16)

Assuming that the momentum of scattered electrons is
much larger than its thermal one, the collision operator
can be essentially simplified. This is connected with the
possibility to replace the distribution function f(p0) with
the δ-function:

〈St[f ]hot〉= F (p)
∫
αf(p0) d

3p0, (17)

F (p) =
2νposcδ(p‖)
p3⊥

. (18)

This is the power-law spectrum of hot electrons, which
was predicted before [14], and seems to be observed in the
experiment.
Since the momentum of such a particle after the colli-

sion is large and, correspondingly, the collision frequency
for them is negligibly small, then it makes sense to regard
them as “escape” electrons. By analogy with the appear-
ance of electrons escaping in the case of collisions in a
static field [6], these particles almost never collide with
ions in an alternating EM field henceforth and in some way
may be called “lost” for the energy exchange processes.
The loss frequency µ, i.e., the frequency of the appear-
ance of electrons in the trailing edge of the distribution
function, may be estimated according to the relation

µ≡ α(pT )
∫
p>pT

F (p) d2p=
niposc

π
boscbv, (19)

where bv = 2e
2Z/T . The distribution of escape particles

over a time unit in the momentum space is given by
formula (17).
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So, the collision operator can be written qualitatively
as a sum of 2 terms, specifically, the “diffusion” term and
the hot-particle “generator”:

Stei[f ] =
∂2B̃ijf(p)

∂pi∂pj
+F (p)

∫
f(p0)

p0
d3p0−µf(p). (20)

Such representation gives the correct value for the
plasma heating rate and for the distribution of hot
electrons appearing due to the collisions. However, it is not
correct for the kinetic peculiarities of the collisions. One
should use collision operator (2) with core (11) or (12),
if plasma kinetics were to be described accurately.
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