
                          

Intermittency route to chaos for the nuclear billiard
To cite this article: D. Felea et al 2011 EPL 93 42001

 

View the article online for updates and enhancements.

You may also like
Gravitational waves, neutrino emissions
and effects of hyperons in binary neutron
star mergers
Kenta Kiuchi, Yuichiro Sekiguchi,
Koutarou Kyutoku et al.

-

A historical overview of nuclear structure
studies in Strasbourg Laboratories:
instrumentation, measurements and theory
modelling—hand-in-hand
F A Beck

-

Effects of Tensor Couplings on Nucleonic
Direct URCA Processes in Neutron Star
Matter
Yan Xu,  , Xiu-Lin Huang et al.

-

This content was downloaded from IP address 3.140.198.173 on 25/04/2024 at 18:06

https://doi.org/10.1209/0295-5075/93/42001
https://iopscience.iop.org/article/10.1088/0264-9381/29/12/124003
https://iopscience.iop.org/article/10.1088/0264-9381/29/12/124003
https://iopscience.iop.org/article/10.1088/0264-9381/29/12/124003
https://iopscience.iop.org/article/10.1088/1402-4896/aab757
https://iopscience.iop.org/article/10.1088/1402-4896/aab757
https://iopscience.iop.org/article/10.1088/1402-4896/aab757
https://iopscience.iop.org/article/10.1088/1402-4896/aab757
https://iopscience.iop.org/article/10.1088/0256-307X/33/9/099701
https://iopscience.iop.org/article/10.1088/0256-307X/33/9/099701
https://iopscience.iop.org/article/10.1088/0256-307X/33/9/099701


February 2011

EPL, 93 (2011) 42001 www.epljournal.org

doi: 10.1209/0295-5075/93/42001

Intermittency route to chaos for the nuclear billiard

D. Felea
1(a)
, C. C. Bordeianu

2
, I. V. Grossu

2
, C. Beşliu
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Abstract – We analyze on a classical 2D version of the “nuclear billiard” the onset of chaotic
behaviour of the three-dimensional nucleonic trajectories in different dynamical states of the
axially symmetric deformed nuclei. The coupling between the single-particle and the collective
degrees of freedom in the presence of dissipation for several multipolarities is taken into account.
We examine the order-to-chaos transition by studying the Shannon entropies, which quantify
the time rate of information production during a certain motion. For the monopole and dipole
deformations an increasing divergence of the nucleonic trajectories from the adiabatic to the
resonance regime is observed. Also, a peculiar case of intermittency is reached in the vicinity of
the resonance, for the monopole case. The quantity of energy transferred in a nuclear collision
is shown to be the control parameter which adjusts the intermittent behaviour of the studied
system.

open  access Copyright c© EPLA, 2011

Introduction. – Deterministic chaos is usually defined
as irregular, unpredictable behaviour of the trajectories
generated by nonlinear systems whose dynamical laws,
involving no randomness or probabilities, predict a unique
time evolution of a given system.
Over the last three decades an increasing number of

papers have treated the study of the deterministic chaotic
behaviour of Fermi nuclear systems (e.g., [1–12]). The
interest for analyzing the order-to-chaos transitions on
such systems was linked to the problem of the onset of
dissipation of collective systems through mainly one-body
and two-body processes. Among these we mention the
interaction of the nucleons with the potential well, the
evaporation of individual nucleons in nuclear peripheral
interactions, and the collisions between nucleons without
taking into account the Pauli-blocking effect.
These kinds of analyses were performed for the first

time by Burgio, Baldo et al [1,2] considering a system
of nucleons which move within a container modelled as a
Woods-Saxon–type potential and kick the container walls
with a specific frequency. They discussed the damping of
the movement and the relation with order-chaos transition
in single-particle dynamics.

(a)E-mail: dfelea@spacescience.ro

Papachristou and collaborators [3] studied the decay
width of the isoscalar giant monopole resonance for various
spherical nuclei, on the above classical model. Following
this formalism, the beginning of the chaotic behaviour
for a number of nucleons in various dynamical regions at
different multipolarities was surveyed [4].
The present study of a single-particle dynamics influ-

enced by a vibrating potential explores the interface
between two complementary approaches. One of them
analyzed the order-chaos interplay of the single-nucleon
trajectories in average deformed potentials (for e.g.,
[13–15]). The other, chaos in collective motions, was
investigated in a number of papers based either on the
interacting boson model, on the geometric collective
model, or on the time-dependent relativistic mean-field
model (e.g., [16–21]).
For an axially symmetric deformed nucleus, the nucle-

onic motion can be studied in a meridian plane rotat-
ing with constant velocity around the symmetry axis.
The interaction between a single-nucleon and the nuclear
core containing the rest of (A− 1) nucleons (i.e., the
nuclear mean field) was modelled byWoods and Saxon [22]
with a Fermi-type spherically symmetric potential. In this
context we investigate the chaotic behaviour of a single
nucleon in a two-dimensional (2D) deep Woods-Saxon
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potential well with a small diffuseness of the surface.
Because it prevents the nucleon from escaping, such a
system is considered a good approximation of a “nuclear
billiard”.
A detailed picture of the achievement of determinis-

tic chaos is presented for a comparative study between
the adiabatic and the resonance stage of the nuclear
interaction. By using generalized information entropies
(e.g., [23–25]), it is emphasized that in the resonance phase
of the interaction, the onset of chaotic behaviour is found
to be earlier than at any other adiabatic collective frequen-
cies of the Woods-Saxon potential well for the monopole
and dipole modes.
Close to resonance we obtain for the monopole vibra-

tions the characteristic feature of the intermittency
regime, i.e. sudden change to a laminar behaviour
(so-called intermission) of a specific signal between
two turbulent phases. Albeit intermittency is a well-
known phenomenon for billiards [26,27], in particular
for Hamiltonian systems with divided phase space (e.g.,
mushroom [28–30] and annular billiards [31]), and for
connected Hamiltonian systems [32], we show that this
property also holds for a Woods-Saxon billiard container
with inelastic particle-wall interactions.
The intermittency found is described in this paper

as a mere feature of the “nuclear billiard”. By using
phenomenological parametrizations (like in [3]), and by
introducing other couplings among various nuclear degrees
of freedom (e.g., [4]) one can observe how the nuclear
dynamics during collisions is influenced by the emergence
of chaotic bursts between intermittent periods of time.
The intermittent dynamics, as described by a long-

range temporal persistence of correlations [33], could
particularly be studied when the nuclear multifragmen-
tation process at various excitation energies is linked to
the nuclear liquid-to-gas phase transitions (e.g., [34–40]),
being a possible way of extracting information about the
nuclear equation of state.

Basic formalism. – We use for its simplicity (as in,
for e.g., [1,2]) a classical version of the vibrating potential
model for finite nuclei [41]. The physical system contains
a number of A spinless and chargeless nucleons, with
no internal structure. Due to the axial symmetry of the
deformed nucleus it would be sufficient to study the single-
particle dynamics in a 2D deep Woods-Saxon potential
well considered as a “nuclear billiard”. The oscillating
surface of the well is periodically hit with a certain
frequency ω.
The Bohr Hamiltonian in polar coordinates is a sum of

two components: kinetic (Ekin.) and potential (Epot.), the
kinetic one decoupling into radial (Er), centrifugal (EL),
and collective terms (Ecoll.):

Ekin. =Er+EL+Ecoll. =
p2r
2m
+

p2θ
2mr2

+
p2α
2M

, (1)

Epot. = V (r,R (θ, α))+
mR20Ω

2α2

2
. (2)

As only axially symmetrical terms are considered, the
phase space is thus reduced to three degrees of freedom
(d.o.f.), being defined by the single-nucleon and collective
coordinates and their conjugate momenta: (r, pr), (θ, pθ)
and (α, pα). The collective coordinate α oscillates with
Ω frequency, and the nucleon mass m takes the value:
938MeV.
The Woods-Saxon potential is constant inside the

billiard and a very steeply rising function on the surface:

V (r,R (θ, α)) =
V0

1+ exp
[
r−R(θ,α)

a

] , (3)

with V0 =−1500MeV, deep enough to prevent the escape
of the nucleons regarded as classical objects for the present
analysis. For the same reason, the diffusivity coefficient
a has a very small value 0.01 fm. The vibrating surface
can be written as in [1,2], depending on the collective
variable and Legendre polynomials PL(cos θ), R0 = 6 fm
being chosen for consistency with previous papers [1,2]:

R=R (θ, α) =R0 [1+αPL (cos θ)] . (4)

We choose for this study the first two multipolarities
L of the potential well: 0 for the monopole, and 1 for
the dipole case. Because it can not be regarded as a
physical oscillation of the potential surface, but rather
as a global or local displacement of the protons and
neutrons [42,43], an adequate computational description
of the dipole mode would require two distinct nucleonic
fluids, oscillating against each other (see, for e.g., [4]). As
the present analysis is restrained to an isospin-free single-
particle dynamics in a “nuclear billiard”, the L= 1 mode
is only generically designated as a dipole deformation of
the potential well (e.g., [44,45]).
Once the Hamiltonian is chosen, the numerical simu-

lations are based on the solution of the Hamilton
equations:

·
r=

pr

m
,

·
pr=

p2θ
mr3

− ∂V

∂r
, (5)

·
θ=

pθ

mr2
,

·
pθ=−∂V

∂R
· ∂R
∂θ

, (6)

·
α=

pα

mR20
,

·
pα=−mR20Ω2α−

∂V

∂R
· ∂R
∂α

. (7)

A Runge-Kutta–type algorithm (order 2–3) with an
optimized step size was used for solving the system of
differential equations, while keeping the absolute errors
for the phase space variables under 10−6 and conserving
the total energy with relative error: ∆E/E ≈ 10−8.
The equilibrium deformation parameter ᾱ, which is the

mean collective variable, can be calculated (e.g., for L= 0)
by equating the mechanical pressure of the wall, Pwall with
Ppart., the pressure exerted by the particles:

Pwall =
mΩ2

2π
·
−
α

1+
−
α
, Ppart. =

T

πR20

(
1+

−
α
)2 . (8)
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Thus, one gets the equation for the equilibrium value of
the collective coordinate in 2D, in the monopole case:

−
α
(
1+

−
α
)
=

2T

mR20Ω
2
. (9)

Then a small perturbation of this collective variable was

considered α(t= 0 fm/c) =
−
α+0.15 [1,2] and the evolution

of the physical system was thoroughly investigated.

On the resonance condition. – One can choose the
wall oscillation taking place close to adiabatic conditions,
imposing a wall frequency smaller than the single-particle
one. Thus, the frequency of vibration Ωad. was chosen less
than 0.05 c/fm, which corresponds to an oscillation period:

τwall =
2π

Ωad.
�125.66 fm/c. (10)

By introducing the maximum particle speed:

v=

√
2T

m
, (11)

and the parameters as in [1,2]: R0 = 6 fm and the 2D
kinetic energy, T = 36MeV, one can obtain the value for
the single-particle period:

τpart. =
2π

ω
=
2R0
v
≈ 43.33 fm/c . (12)

In addition to [1,2] we introduced a physical constraint
to this elementary physical system and continued that
type of analysis necessary for the study of a nonintegrable
dynamical system. At the beginning we considered a
physical situation and we chose instead a static vibrating
“nuclear billiard”, a projectile nucleus having the same
properties, colliding with a target nucleus. It is well known
that the nuclear interaction, at incident energies ranging
from MeV to GeV, can result in a multitude of processes
from the nuclear evaporation to complete fragmentation or
multifragmentation, according to the impact parameter.
It was shown in [46,47] that during this kind of processes

even for peripheral events an unnegligible amount of
energy is transferred by nucleon-nucleon scattering to
the nucleons of the projectile and not only the trans-
verse momentum distributions, but also the longitudinal
momentum distributions as measured in the projectile
fragmentation rest frame can reveal the centrality status
of the interaction. It can also offer a hint on the appar-
ent temperature of a Fermi gas of nucleons which was
found to be [47] near the isotopic temperatures, i.e. several
MeV [48–50].
It was therefore supposed that the target fragmentation

can be associated with a resonance process. In order to
obtain such behaviour, the wall frequency was gradually
increased to the resonance frequency Ωres. = 0.145 c/fm.
However, nuclear evaporation or plain breakup of a projec-
tile nucleus can take place long before this regime is
achieved by redistributing energy between the nucleons

themselves and also between single-particle degrees of free-
dom and collective ones. Individual nucleons or clusters
can thus have enough kinetic energy to escalade the wall
barrier.
We should also emphasize that we can either have the

case that can be put in correspondence with a nuclear
collision process, i.e. the variation of the nucleonic
frequency oscillation as the apparent temperature of the
nucleons in the nuclei increases (see eq. (11) and eq. (12)),
maintaining the potential well vibration constant, or
respectively, the inverse situation in which the period
between two consecutive collisions of the nucleon with the
self-consistent mean field is kept invariable, while modify-
ing the oscillation modes of the nuclear surface. The latter
regards our studied case and is the reversed physical case
previously described. It was used because of the specific
choice of the “toy model” parameters described in [1,2].
The most realistic evolution of the nucleons in a

chosen potential can assume a simultaneous variation
of both angular frequencies. The resonance condition of
the coupled classical oscillators should remain however
an important condition for a rapid appearance of a
deterministic chaotic behaviour of the physical system
in study at different time scales. A proper analysis of
a system should provide the variation of the collision
radian frequency of the nucleons inside the “billiard” as
the apparent temperature increases and the change in
the vibrating potential period, supposing that the multi-
polarity increases when pumping energy in the “nuclear
reservoir” during interaction. We can for example use in
simulations, for nuclei with a large number of nucleons,
the liquid-drop model or the collective model, which
predict a frequency of vibration as a function of the
multipolarity:

ΩL =

√
CL

BL
, (13)

with CL being the elasticity coefficient, and BL the mass
coefficient for the oscillator of L multipolarity.

Shannon entropy analysis. – To investigate route to
classical chaos, we paid attention to the time evolution of
the generalized information entropy (or Shannon entropy)
(e.g., [23–25]), N(t) being the number of gradually occu-
pied cells until the time t:

SShannon (t) =−
N(t)∑
k=1

pk · ln pk . (14)

This type of entropy is actually a number which quan-
tifies the time rate of information production for a chaotic
trajectory. We consider in the first place the case of a
particle that at every moment occupies a cell of the two-
dimensional lattice phase space with a pk probability:

pk = 1/Ntot. , Ntot. =Nr ·Npr ·Nθ , (15)

where Ntot. is the total cells number and Nr, Npr , and Nθ
are the number of bins of the (r, pr, θ) lattice.
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Fig. 1: The Shannon entropy of the one-particle phase space for
all frequencies studied (Ω= 0.02–0.145 c/fm), when the single
and collective degrees of freedom are uncoupled (upper panel)
and coupled: L= 0 (central panel), L= 1 (lower panel).

Table 1: The computed SShannon(t= 800 fm/c) of the (r↔ pr↔
θ) one-particle phase space maps.

Oscillation frequency UCE L= 0 L= 1
Ωad. = 0.020 c/fm 3.6889 3.7136 3.7842
Ωad. = 0.050 c/fm 3.6889 4.0775 4.0775
Ωint. = 0.100 c/fm 3.6889 3.6889 3.8501
Ωres. = 0.145 c/fm 3.6889 4.1589 4.0431

Since pθ is a constant of motion for the monopole
and the uncoupled equations (UCE) cases, we use for
comparisons only these three phase space variables.
When shifting towards many-body quantum chaos, the

quantum counterpart of the information entropy is used
to measure the degree of complexity of individual wave
functions, expanded as superposition of ψk states with Ck
coefficients [51–53]:

Squantum =

N∑
k=1

|Ck|2 · ln |Ck|2 . (16)

As an alternative measure for the classicaly defined
entropy (eq. (14)) we also used the cumulative filling
percentage of the one-nucleon phase space:

η (t) =
N (t)

Ntot.
· 100 (%) . (17)

For a given 2D phase space lattice formed of Ntot. = 4
3

bins we present in fig. 1 a comparison between the infor-
mation entropies of the physical system in study, starting
from the adiabatic stage of interaction and gradually
increasing the frequency towards the resonance value,
Ωres. = 0.145 c/fm. The slopes for the resonance frequency
case were found to be significantly higher than for the
adiabatic one (Ωad. = 0.02 c/fm) for the multipolarities
involved.

Table 2: The filling percentage η of the (r↔ pr↔ θ) one-
particle phase space maps.

Oscillation frequency UCE L= 0 L= 1
Ωad. = 0.020 c/fm 62.50 64.06 68.75
Ωad. = 0.050 c/fm 62.50 92.19 92.19
Ωint. = 0.100 c/fm 62.50 62.50 73.44
Ωres. = 0.145 c/fm 62.50 100.00 89.06

Table 3: The time (in fm/c) at which the information entropies
of the (r↔ pr↔ θ) one-particle phase space maps have the
maximum value (i.e. η= 100%).

Oscillation frequency UCE L= 0 L= 1
Ωad. = 0.020 c/fm > 105 6023 6359
Ωad. = 0.050 c/fm > 105 1618 4223
Ωint. = 0.100 c/fm > 105 11442 3241
Ωres. = 0.145 c/fm > 105 729 1887

Table 4: The time (in fm/c) at which the one-particle Shannon
entropies of a pack of w= 5 close orbits begin having the
maximum value.

Oscillation frequency UCE L= 0 L= 1
Ωad. = 0.020 c/fm > 104 1095 555
Ωad. = 0.050 c/fm > 104 855 476
Ωint. = 0.100 c/fm > 104 4133 333
Ωres. = 0.145 c/fm > 104 279 327

Another comparison revealed significant differences
between the onset times of the quasi-constant Shannon
entropy values, for all cases taken into consideration.
Thus, for four vibrational radian frequencies and for three
coupling modes of the Hamilton equations we show the
information entropy values after 800 fm/c (table 1) and
the associated phase space filling degrees (table 2). Also,
in table 3, are presented the periods of time after which
the filling percentages η equal unity.
We continue the analysis by further defining the Shan-

non entropy for a group of w nearby orbits:

Spack (t) = lnNw(t), (18)

so that the number of occupied cells is: 1�Nw(t)�w,
thus describing the spread of the trajectories at each
moment of time t. When reaching the maximum diver-
gence, the entropy for five distinct phase space paths gets
its highest value (i.e. Spack = 1.6094) (see table 4).
We begin the analysis with the UCE case. The single

and collective uncoupled d.o.f. give birth to a quasi-
laminar behaviour with a weak development of chaotic
states. The one-particle information entropy shows an
identical evolution, no matter the frequency chosen. The
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orbit covers, after 800 fm/c, only 62.50% of the entire
lattice (table 2) and does not reach 100%, even after
∆t= 100000 fm/c (table 3). Also, the phase space is not
covered up by all five trajectories for the whole range of
10000 fm/c considered, when analyzing Spack (table 4).
For the dipole mode at Ωad. = 0.05 c/fm, it appears

that, after only 800 fm/c, the entropy closes in upon
its maximum value: SMax. = lnNtot. = 4.1589 (table 1).
However, on long periods of time, the real tendency is
towards filling up the nucleonic phase space as rapid as the
vibrational frequency is increased (table 3). The pattern is
repeated when studying the Shannon entropy for closeby
nucleonic trajectories (table 4).
We found quite the same feature for the monopole case,

except for the intermittent “window” at Ωint. = 0.1 c/fm
(tables 1 and 2). The occupying rate is so small in
the monopole intermittent zone, that just at 11442 fm/c,
the particle would have covered the whole phase space
(see table 3). A similar conclusion can be drawn from
table 4. The trajectory pack information entropy reaches
its highest value after the longest one-particle evolution
time of all monopole cases considered: 4133 fm/c. The
Shannon entropy analysis thus revealed that the found
intermittency can not be here regarded as a classical
alternation between laminar and chaotic behaviours, but
as an alternation between consecutive turbulent states,
although with very different onset times of chaoticity.
However, one has to bear in mind that the validity

of the aforementioned results is restricted to classical
chaos only. For quantum models there is a departure from
similar results obtained on a classical premise [51], the
so-called “quantum suppression of classical chaos” [52].
Even in the case of a good quantitative concordance in
the chaotic regime of the semi-classical predictions with
the corresponding quantum ones, a few eigenstates were
found to present a diminished delocalization [53,54].
Thus, the above classical results, obtained in the

approximation of the microcanonical ensemble, should
only be qualitatively regarded as appropriately close to
similar results from quantum many-body approaches.
This only happens whenever considering that the physical
system reaches a statistical thermal equilibrium and the
phase coherence of the eigenfunctions can be regarded to
have a low statistical weight (e.g., the case of an initially
coherent state of a heavy-ion collision after a sufficient
time of relaxation (i.e., phase decoherence)) [51].

Conclusions. – A comparative study was done
between specific physical regimes of nuclear interaction:
adiabatic and resonance, giving a detailed picture of a
possible scenario towards a pure deterministic behaviour
of chaotic type of the studied nucleonic system in a
two-dimensional deep Woods-Saxon potential well.
By comparing the order-to-chaos transition for these

cases of interest, it was shown that the couplings between
the one-particle and collective dynamics significantly

decrease the onset of the chaotic nucleonic motion
towards realistic nuclear interaction time scale.
The study is based on an analysis of the Shannon

entropy type, pointing out that the paths to chaos for
the “nuclear billiard” are quite similar for the first two
multipole degrees, as we noticed a more rapid emergence
of chaotic states as moving on towards higher radian
frequencies of oscillation.
The main result obtained consists in locating a phase

alternation of distinct degrees of chaotic dynamics in
the monopole case of nuclear wall oscillation at Ωint. =
0.1 c/fm, revealing a quasi-laminar behaviour prior to the
resonance stage of interaction. The intermittency was thus
shown to be a specific property for “nuclear billiards”
defined by inelastic particle-wall collisions.
Further studies are currently in progress, investigating

the intermittent behaviour for several vibrational modes
on an extended frequency domain, associated to the
dynamics of a nuclear collision. The amount of energy
transferred in such a collision, reflected by the nucleonic
frequency oscillation ω, or equivalently, by the collective
vibrational frequency Ω, was shown to be the control
parameter which tunes up the intermittent behaviour
of the studied nuclear system. Establishing the type of
intermittent dynamics found, by calculating its associated
laminar length distribution [55], is regarded as a step
forward.
The used formalism can be phenomenologically

improved by adding spin and charge to the nucleons.
Also, by choosing realistic initial conditions and poten-
tials parameterized, and by considering other types
of couplings beside collective ones (like the spin-orbit
interaction).
A semi-quantal treatment of this problem, including

the Pauli-blocking effect, is hoped to shed more light
on the discussed issue in the near future. While the
chaotic dynamics was proved to prevail in giant resonances
[56,57], the detection of the interplay between laminar
and turbulent behaviours could provide a hint on the role
played by the quantum chaos in the fragmentation and
damping of giant resonance excitations [58].
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