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Abstract – A non-conventional mechanism for scarring in generic Hamiltonian systems with
mixed dynamics, taking place through the combined focusing and defocusing effect of focal points
of short pieces of bifurcated orbits, is discussed.
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Introduction. – Scar theory [1,2] has been a subject
of much interest since the publication of Heller’s seminal
paper [3]. It describes an enhanced localization of quantum
probability density along short unstable periodic orbits
(POs) that appears in certain individual eigenfunctions
of classically chaotic systems, this being important since
it implies a dramatic departure from the predictions of
random matrix theory [4]. Scarred structures were system-
atically studied by Heller [3], who constructed a theory
based on wave packet propagation [5]. Another key contri-
bution to the theory of scars is due to Bogomolny [6],
who derived an explicit expression for the smoothed prob-
ability density over small ranges of space and energy. i.e.
averaged over a large number of eigenfunctions semiclas-
sically [7,8]. A corresponding theory for Wigner functions
was developed by Berry [9]. Scars have also been observed
experimentally [10–13].
The situation is, however, quite different in the case

of generic systems with mixed (regular and chaotic)
dynamics where scarring has been much less studied. Some
results [14,15] should, nevertheless, be mentioned. Special
consideration deserves the work of Keating and Prado [14]
who showed, by considering scaling laws in an extension of
Bogomolny’s theory, that scars of quantum eigenfunctions
by classical PO may be dramatically enhanced when
these orbits undergo bifurcations. This “superscarring”
manifests as a stronger localization on wider regions
of configuration space than in the case of the scars
corresponding to isolated POs.

(a)E-mail: f.borondo@uam.es
(b)Permanent address.

In this letter, we discuss an unconventional mechanism
of scarring that happens in systems with mixed dynamics
due to the effect of short pieces of (long) bifurcated
orbits. We show how the building-up of quantum (and
classical) density takes place as the result of the interplay
between focusing and defocusing caused by neighboring
focal points (FPs) in the orbits of an infinite series
of period-doubling saddle-node bifurcations (SNB). This
mechanism “dresses” a particular area of configuration
space by pieces of different orbits, which arise in the Farey
tree of the original PO, or even by pieces of orbits which
have nothing to do with the central bifurcated PO. As
an illustration, we discuss this effect in a realistic model
for the vibrations of the LiNC/LiCN triatomic molecule,
where it can greatly affect many aspects of the associated
dynamics, such as for example the isomerization process
LiNC� LiCN.
System. – The vibrational dynamics of the

LiNC/LiCN isomerizing molecular system has been
extensively studied in the past in connection with the
issue of quantum chaos [16,17]. For example, in ref. [18]
the superscarring effect of a pair of 1 : 1 SNB POs [19]
was considered.
This system can be modelled by the 2-dof Hamiltonian

H =
P 2R
2µ1
+
1

2

(
1

µ1R2
+
1

µ2r2e

)
P 2ϑ +V (R,ϑ), (1)

where R and ϑ are Jacobi coordinates specifying the
position of the Li atom with respect to the center of mass
of the CN fragment. The C-N distance is kept frozen at
its equilibrium value, re, since this motion is of sufficiently
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Fig. 1: (a) Potential energy surface for LiNC/LiCN. The
minimum energy path (dotted line), a 1 : 7 asymmetrical
periodic orbit (full line) relevant to our work, and its focal
points (full circles) are also plotted. (b) Composite Poincaré
surface of section at E = 5080.51 cm−1. The fixed points of the
1 : 7 periodic orbit are indicated by full triangles. (c) Function
D in the pre-exponential factor of eq. (3) calculated along the
1 : 7 periodic orbit. Zeroes correspond to focal points.

high frequency to effectively decouple from the rest of
vibrational coordinates of the molecule. The interaction
potential is shown in fig. 1(a) as a contours plot. It
presents two wells, at ϑ= 0 and 180◦, corresponding to
the linear isomers LiCN and LiNC, which are separated by
a modest energy barrier. The motion in ϑ is very floppy,
and chaos sets in at very moderate values of the excitation
vibrational energy.
Superimposed on the potential surface, we also present

in fig. 1(a) a PO which is very relevant to our work. It
corresponds to an asymmetrical 1 : 7 resonance embedded
in the chaotic sea, which appears “out of the blue” in a
SNB at E = 4243.76 cm−1, due to a sudden variation of the
adiabatic stretching frequency, and has a profound influ-
ence in the quantum mechanics of the system, both above
and below (“ghost orbits”) this energy [19]. The trajectory
has two interesting “end-legs”. The left one (as drawn in
the figure), centered at ϑ∼ 110◦, is horseshoe shaped, and
the one at the right end is a very narrow U, running almost
vertical at ϑ∼ 265◦. The companion PO, born at the same
SNB, is a close-lying 1 : 7 resonant trajectory with very
similar topology, which is indistinguishable on the scale of
the figure.

Classical dynamics. – The classical vibrational
dynamics of our system, LiNC/LiCN, can be adequately
followed by considering Poincaré surfaces of section
(SOS), computed in our case by using the minimum
energy path, Re(ϑ), connecting the two isomers as the
sectioning plane (see the dotted line in fig. 1(a)). This

choice requires an additional canonical transformation,

ρ = R−Re(ϑ), Pρ = PR,

ψ = ϑ, Pψ = Pϑ−
(
dRe
dϑ

)
ϑ=ψ

Pρ, (2)

to make the SOS an area-preserving map (see ref. [20]
for details). In fig. 1(b) we present a composite SOS for
E = 5080.51 cm−1, showing that the dynamics are mostly
chaotic, with two islands of regularity corresponding to
the two isomer wells.

Computational method. – Central to the spirit of
this letter is the idea that scarring involves (in general)
groups of neighboring eigenstates, the smoothing of which
renders the localized structures [5–7]. Also, it is crucial
the fact that in systems with mixed dynamics scarring
appears most often only partially, due to other competing
effects such as, for example, the high localization taking
place in the existing regular regions, or the effect that we
are presenting in this letter.
Taking this into account, we present in the top row of

fig. 2 the wave functions, |n〉, of some representative states
in one such group, centered around the energy considered
in this work. They have been calculated using the discrete
variable representation method, as implemented by Bacic
and Light [21]. As can be seen, they all exhibit a noticeable
scar from the horseshoe leg of the 1 : 7 PO of fig. 1(a).
This localization is more easily seen in phase space and
then we present in the bottom row of the figure the
quantum SOS (QSOS) computed from the corresponding
Husimi functions. To visually foster this effect, only the
highest contours (> 50% of the maximum value) have been
plotted. However, and as noted above, the scarring of
the PO is only partial, in the sense that non-negligible
probability density also exists around the wells where
regular motion takes place.
To explain this unconventional scarring mechanism we

use the semiclassical Green’s function [22]

G(x, x′;E) =
1

i�

∑
traj

∣∣∣∣ 1vv′D
∣∣∣∣
1/2

× exp
[
i

�
S(x, x′;E)− iπ

2
ν

]
, (3)

where the sum is taken over all trajectories connecting
points x and x′ at energy E, S(x, x′;E) is the classical
action function, ν the Maslov index, and v and v′ the
velocity components along the orbit, respectively. From
eq. (3), information on the wave functions of the system
can be extracted by means of the quantum-mechanical
expression

G(x, x′;E) =
〈
x

∣∣∣∣ 1

E− Ĥ

∣∣∣∣x′
〉
=
∑
n

〈x|n〉〈n|x′〉
E−En . (4)
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Scarring and focal points

Fig. 2: Some LiNC/LiCN wave functions (top row) and the corresponding Husimi-based QSOS (bottom row) scarred by the
horseshoe left-end of the 1 : 7 periodic orbit in fig. 1. Negative values of the wave functions are indicated by dashed lines.

Regularization by taking an average over a narrow energy
window around the poles with x= x′ renders the following
approximate expression for the quasi-wave functions [6]

〈|ψn(x)|2〉 � 〈Im G(x, x;E)〉. (5)

It is important to notice that the contributions to the
summation in (3) appear as products of two factors,
with opposite effects. The first one is the amplitude
or pre-exponential factor, that can produce a dramatic
accumulation of density at the caustics, resulting in
catastrophes [23]. It is determined by the classical density,
|vv′D|−1/2, whose matrix elements can be calculated quite
efficiently using local coordinates [24], being related to
the rate of divergence of trajectories starting at the same
point with momenta pointing toward slightly different
directions, and then with the “focusing” properties of the
system dynamics. The second factor in the sum of (3) is
a harmonic term that gives rise to complicated interfer-
ences, this tending to eliminate the previous accumula-
tion patterns. Let us discuss next the effects of these two
different terms in the problem addressed in this letter.

An unconventional scarring mechanism. – Super-
imposed on the 1 : 7 PO, we indicate in fig. 1(a) with full
circles the position of the corresponding FPs, which corre-
spond to the zeroes of the D-function (see fig. 1(c)). Aside
from the five “normal” FPs, which are associated with
turning points, and the two terminal ones, not appearing
since v has been explicitly included in eq. (3), there are
in this plot five additional FPs at intermediate positions.
This is typical of bifurcated POs, due to the complexity
inherent to the evolution process followed from their incep-
tion at the bifurcation to higher values of the energy [24].
In particular, most interesting for our purposes are the
three leftmost FPs, located in the range ϑ= 90◦–120◦,
since it is in this region where the horseshoe leg of the PO
scars the wave functions shown in fig. 2. Indeed, the behav-
ior of D in this interval is quite notorious. Instead of cross-
ing the horizontal axis, giving rise to simple zeroes that

would correspond isolated FPs, the function develops a
fold [23], originating three close lying zeroes and the same
number of close lying FPs. Again, it should be remarked
that this behavior is typical from bifurcated POs. Accord-
ingly, the stability of the bifurcated orbit is not uniform
along all its length, some pieces being more stable (smaller
values of the local Lyapunov exponents) than others. The
important point here is that greater stabilities imply larger
values of the classical density. Therefore, it is feasible that
short segments of long bifurcated orbits give rise to big
localization effects, this being the hallmark of scars. In our
case, it is evident from fig. 2 that only the first (and last)
segments (or oscillations) of the PO produce scars, while
the contribution from the middle part is much smaller. In
this sense, it can be stated as a rule, that any bifurcated
PO consists of “bright” and “dark” segments, contribut-
ing, respectively, to the scarred and (chaotic) background
parts of the system eigenfunctions.
Let us consider now in more detail how this idea can

be used as the basis to render a plausible mechanism
explaining the existence of the horseshoe scars observed in
the LiNC/LiCN eigenstates of fig. 2, or in general of partial
scars in regions where no short POs with an adequate
topology and symmetry exist. For this purpose, we show
in fig. 3(a) the time evolution of a bunch of trajectories
starting at point i, next to the leftmost FP F1, with
different direction of the momenta at the energy under
consideration, i.e. E = 5080.51 cm−1. These trajectories
mimic the evolution of the classical flow in configuration
space near the segment of the 1 : 7 PO whose effect in
the quantum mechanics of the system we are trying to
analyze. To keep the optical analogy as much as possible,
we use a “wavefront representation”, plotting trajectory
points at equally spaced intervals of time. As can be
seen in fig. 3(a), trajectories (rays) first leave i, fan-
like spreading under the defocusing effect of F1. During
this interval and until trajectories bounce at caustic a,
which acts like a mirror, the classical density around
the PO decreases. The “fronts” then move upwards,
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(a)

(b)

Fig. 3: Illustration of the scarring focusing-defocusing mech-
anism of trajectories by focal points proposed in the present
letter for the case of the bifurcated 1 : 7 periodic orbit of
fig. 1(a). See text for details.

keeping (approximately) parallel to each other. So far,
this behavior is not very different from that found for
an isolated FP —the only acting mechanism in the case
of a completely unstable PO— which first focuses and
then defocuses the flow of trajectories. However, the
situation in the case of a bifurcated PO, like ours, is
completely different, since the next FP encountered by
the trajectories is not very far away. Indeed, when our
diverging trajectory beam “collides” with F2,3 (near b and
c) it is refocused, so that the amount of classical density
in the vicinity of the PO is (approximately) conserved.
This action is reinforced by nearby bifurcated POs with
similar topologies, in particular the SNB companion and
the corresponding family of 1 : 7 Farey tree daughters with
higher periods [25]. The result is a self-organized family
of FPs forming a quite narrow corridor in configuration
space, which like a wave guide prevents the trajectory
flow from escaping the PO neighborhood. This can be
interpreted as the final result of a focusing-defocusing
scarring mechanism existing in this part of the phase
space. Notice that this means that chaos channels density
in this case, not as usually, by barriers but by a series of
traps formed by the FPs. Finally, the bunch of trajectories
in fig. 3(a) progress to the right (towards d), as ϑ
increases. It is during this phase that a folding of the fronts
happens.

Although the above-described dynamics are complex,
it is easily be visualized in phase space. The most suit-
able projection is depicted in fig. 3(b), where the rotating
effect of the FPs becomes evident. At i, trajectories form a
(mostly) vertical segment which rotates around the propa-
gation direction, as it progresses towards caustic a. There,
the front has rotated ∼ 90◦, thus appearing (almost) hori-
zontal. This configuration is maintained until trajectories
reach region b, where the folding process starts. At c, the
folding is completed, and both configuration and orien-
tation are maintained until region d is reached. In this
process the trajectories have completed one turn of an heli-
cal motion in phase space. This corresponds to a full period
in R while advancing only slightly in the ϑ-direction. Note
also that the rotation of the trajectories manifold is highly
inhomogeneous, i.e. different at each FP. This is due to
the strong anharmonicities inherent in the floppy poten-
tial describing our system. This methodology provides a
way to visualize the whole dynamical process giving rise
to scars based on “interactions” between nearby PO FPs
acting differently on the trajectory flux.

Numerical argument. – The previous qualitative
arguments can be translated into quantitative results with
the aid of eqs. (3) and (5). For this purpose, we will analyze
separately the two parts entering in each term of the Green
function (3).
A striking image of how the classical density accu-

mulates is obtained from the consideration of the caus-
tics of the system. In this case, caustics are formed
by the projection into configuration space of the previ-
ously described folds. They can be computed from the
FP condition, D= 0, and their formation illustrated by
considering the evolution of an ensemble of neighbor-
ing orbits. Results for trajectories starting at the lower
E = 5080.51 cm−1 equipotential (inner R turning points)
are shown in fig. 4(a). It is clearly seen that the resulting
caustics presents a very complicated shape. For the sake
of the discussion, they will be divided into seven different
parts, labelled by different letters (colors), a–g, respec-
tively. Trajectories starting at a (red) and g (dark green)
give rise, after an elapsed time of ∼ TR/2 being TR the
typical oscillation time along coordinate R in this region,
to a “normal” linear caustic at the outer turning points
(black points in the upper part of the figure). Other trajec-
tories have two or three conjugate points, thus producing
anomalous singular caustics with discontinuities. Indeed,
orbits in b, c, d, and e (black, light green, blue and orange,
respectively) first form, at ∼ TR/2, a “swallowtail” [23]
in the upper central part of the figure (see blow-up in
the inset), and later a smooth curved caustic nearby. We
call this inner portion of the caustic part I. Also, orbits
starting in b, c and d originate at longer times, (∼ TR), an
inner fold caustic (called part II), connecting diagonally
the upper and lower equipotentials in the rightmost part
of the figure. Finally, trajectories in f give rise to another
fold caustic (part III) running vertically in the central part
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Fig. 4: (Color online) (a) Illustration of caustic formation
obtained by propagating trajectories starting in the lower
equipotential at the same energy. Letters and colors label
trajectories originating different parts of the caustics: I, II, and
III (see text for details). The inset zooms in the interesting
swallowtail caustic. (b) Imaginary part of the smoothed semi-
classical Green function, G(x, x;E), for E = 5080.51 cm−1. An
obvious scar by the horseshoe legs of the saddle-node pair of the
1 : 7 periodic orbits (superimposed to the figure) is apparent.

of the figure. The influence of these different portions of
the caustic, concentrating the classical density, is appar-
ent in the wave functions of fig. 2. Particularly relevant are
accumulations on part I for all states, and on part II for
states n= 105, 107 and 112. Notice that it is in the region,
filled by trajectories from b–d, that the focusing-defocusing
mechanism of FPs F1,2,3 acts, channelling the correspond-
ing classical density, as discussed above in connection with
the results of fig. 3. The influence of part III of the caustic
is apparent in states n= 107 and 118.
Once the structure of the caustics arising from the

pre-exponential part of eq. (3) has been analyzed, let us
consider interference, that can be crucial in situations like
ours [14]. To examine this effect, we present in fig. 4(b)
〈ImG(x, x;E)〉, where the averaging is made over an
energy window corresponding to the states shown in fig. 2.
evaluated using a very dense set of retracing trajectories
evenly distributed in the interval 45◦ � ϑ� 145◦ along the

two equipotentials corresponding to E = 5080.51 cm−1.
Contributions at every pixel were computed from all
trajectories starting and returning to it, by using only the
shortest classical paths which included the nearest turning
point. The integration time along these PO segments was
taken as ∼ 3TR. This choice is long enough to guarantee
the development of the desired interference effects, while
ensuring at the same time that contributions from longer
times are not relevant, since they vanish exponentially
fast. Similarly, the contribution of longer paths of the
same type returning after longer periods is also negligibly
small. Remark that the segments of trajectories we used
efficiently mimic the POs structure controlling the Green
function. For one thing, since POs are dense in the
phase space, it is possible to use the associated Farey
tree and construct an infinite set of trajectories with
dynamically close to the central (1 : 7 in this case) PO,
in the sense that that they can be pruned to approach
as much as wanted to it. Actually, the shape of these
orbits do not differ significantly from the central PO
near the ends, although they may be very different, both
in length and period, elsewhere. Second, all unstable
trajectories starting at these ends will eventually finish
their evolution also at ends, thus producing self-reverse
orbits. Figure 4(b) demonstrates that our surrogate of the
(true) semiclassical wave function shows clear evidence of
scarring along the horseshoe leg of the bifurcated 1 : 7 PO
and its companion, both being shown also in the figure.
For example, the number of nodes along this segment is
five, in perfect agreement with the partial scars visible
in most wave functions presented in fig. 2. Moreover, the
accumulation of density along the corresponding caustics
is also apparent, being then a robust effect which is not
destroyed by the interference with other families of POs.

Summary and conclusions. – Since first discussed
by Heller, scarring has occupied a prominent position
in the studies of the correspondence between quantum
and classical dynamics in chaotic systems. The reason is
twofold. First, scars constitute a privileged and straight-
forward indicator showing how classical invariants appear
in the quantum theory. Second, the consequences of such
a peculiar dynamics are also important at practical and
technological level. Although there still remain non-trivial
open questions, we have at present a fairly good under-
standing of the scarring of isolated POs, developed over
the seminal ideas of Heller [3] and Bogomolny [6].
However, much less is known about scarring in systems

with mixed dynamics, despite the fact that they represent
the generality in many fields of physics, and also that it is
known that scars show here spectacular differences [14].
In this letter, we have discussed a new mechanism of
scarring in this type of systems, presenting supporting
numerical evidence obtained in a realistic model for the
LiCN molecule. Here, the accumulation of probability
takes place through a combined focusing-defocusing effect
of the FPs of the scarring PO, this “dressing” some parts
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of the corresponding trajectories. The effect is reinforced
by longer POs arising in the related infinite chain of
bifurcations. This opens an interesting line of research
that will be undoubtedly fruitful. For example, questions
such as, what happens to this mechanism in the true
semiclassical limit, or predicting the energy intervals in
which this mechanism prevails are points that should
be addressed in the near future. We also remark that,
although the work presented here has been carried out at
an energy far above the bifurcation point, our mechanism
should bear some sort of connection or complementarity
with the superlocatization of probability density discussed
by Keating and Prado [14]. In our opinion this is a point
worth considering in the future.
Finally, let us briefly comment on the physical impli-

cations of this scarring effect in the dynamics of the
LiNC/LiCN isomerization reaction. The phenomenon
discussed here implies highly excited motion in the R
coordinate, that, by connecting the two equipotentials
branches, form dividing surfaces [16,19], which act
similarly to a continental divide separating different
watersheds, for the reactive motion along ϑ. Such
dynamical barriers in phase space produce classical
bottlenecks [26]. Here we have unveiled —for a realistic
chemical example— the profound effect that these objects
have at the quantum level; i.e., the barriers manifest
as a strong localization of the wave functions. The
consequences in the isomerization reaction are currently
being investigated by considering the associated flux
matrix elements.
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