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Abstract – The vacuum energy of bosonic fields interacting locally with objects is decomposed
into irreducible many-body parts. The irreducible N -body contribution is finite if the N objects
have no common intersection, O1 ∩O2 · · · ∩ON = ∅. The perturbative high-temperature expansion
of the corresponding irreducible N -body spectral function φ̃(N)(β ∼ 0) vanishes to all orders
even if some of the objects overlap. These irreducible spectral functions and their associated
Casimir energies can, in principle, be computed numerically or approximated semi-classically
without regularization or implicit knowledge of the spectrum. They are analytic in the parameters
describing the relative orientation and position of the individual objects and remain finite when
some, but not all, of theN objects overlap. The finiteness of the irreducibleN -body Casimir energy
of a massless scalar field with potential scattering is explicitly verified and found to be negative
for an even, and positive for an odd number of objects. The sign in this case does not depend
on the strength of the local N -body potentials. Some simple examples illustrate the analyticity
of N -body Casimir energies. A multiple scattering representation of the irreducible three-body
Casimir energy is derived. It remains finite when the three objects overlap only pairwise.

open  access Copyright c© EPLA, 2011

Introduction. – The Casimir energy for two disjoint
bodies is finite and may be estimated [1–5]. It can, in prin-
ciple, be computed to arbitrary numerical precision [6–8].
For disjoint bodies, the multiple scattering representation
of the interaction energy [9–12] thus solves many problems
encountered in technological applications [6,13]. We here
develop an extension of this formalism and extract finite
irreducible Casimir energies for more than two bodies that
are not necessarily mutually disjoint. The analysis gives
a new interpretation to finite parts of zero-point energies
that could provide a framework for exploring gravitational
effects due to vacuum energies [14] and result in a more
systematic approach to Casimir self-stresses for arbitrarily
shaped bodies.
For clarity of presentation and to avoid infrared issues,

we assume that the objects {Oi, i= 1, . . . , N} are all
embedded in a large, but finite, connected Euclidean
region D∅ of dimension d. The thermodynamic limit D∅→
Rd may be taken at the end of the calculation. Formally,
the vacuum energy E12...N of a massless bosonic field in

(a)E-mail: mschaden@rutgers.edu

the presence of N objects may be decomposed as

E12...N = E∅+
∑
i

Ẽ(1)i +
∑
i<j

Ẽ(2)ij + · · ·+ Ẽ(N)12...N , (1)

where Ẽ(k)i1...ik is the irreducible contribution to the
vacuum energy that depends on k objects Oi1 . . . Oik only.
Equation (1) recursively defines the irreducible N -body

Casimir energy Ẽ(N)12...N as an alternating sum of vacuum
energies (see eq. (12)). The irreducible two-body Casimir

energy Ẽ(2)12 for instance is
Ẽ(2)12 = E12−E1−E2+ E∅. (2)

It is finite [11] for two disjoint objects. Below I show

that the irreducibleN -body Casimir energy Ẽ(N)12...N is finite
as long as the N objects have no common intersection,
O1 ∩O2 · · · ∩ON = ∅. For two objects this requires them
to be disjoint, but three and more objects need not be
mutually disjoint. The irreducible three-body contribution
to the Casimir energy of a triangle, for instance, is finite.
For a massless scalar field whose interaction with objects
is modeled by positive local potentials, irreducible N -body
Casimir energies are found to be negative for an even, and
positive for an odd number of objects.
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Subtracted N-body spectral functions. – Some
irreducible vacuum energies, such as self-energies Ẽ(1), may
diverge when the associated objects overlap. Equation (1)
is formal and requires a high-frequency cutoff to be mean-
ingful. However, spectral functions generally are finite and
well defined even when one-loop vacuum energies are not.
They can be similarly decomposed into irreducible parts
and we therefore relate the irreducible N -body Casimir
energy Ẽ(N) to the corresponding irreducible N -body
spectral function φ̃(N)(β),

Ẽ(N) =− �c√
8π

∫ ∞
0

φ̃(N)(β)
dβ

β3/2
. (3)

φ̃(N)(β) is constructed as follows. Let Ds represent the
domain D∅ with objects {Oj ; j ∈ s} embedded, D1...N
being the finite domain D∅ with all N objects included.
Denote with P(s) the power set of the elements of a set
s of finite cardinality |s|�N and let PN =P({1 . . . N}).
Let φs(β) be the spectral function, or trace of the heat
kernel KDs , for the domain Ds,

φs(β) =TrKDs(β) =
∑
n∈N
e−βλn(Ds)/2. (4)

Here {λn(Ds)> 0, n∈ IN} is the spectrum of a bosonic
field that vanishes on the boundary of D∅ and whose
interactions with the objects in Ds are local. We assume
the interaction of the field with the objects is described
by (compatible) local boundary conditions or by positive
local potentials. The considerations of this section are not
restricted to scalar fields and apply to any local bosonic
field theory with cluster decomposition property, including
quantum electrodynamics without free charges.
The irreducible spectral function φ̃(N)(β) in eq. (3)

is given by the following alternating sum of spectral
functions φs(β) for the individual domains Ds:

φ̃(N)(β) :=
∑
s∈PN

(−1)N−|s|φs(β). (5)

This is a special case of the geometrical subtraction
procedure advocated in ref. [15]. We will see that the
asymptotic power expansion of φ̃(N)(β), defined in eq. (5),
for β ∼ 0 vanishes to all orders if the common intersection
of all N objects is empty. A pictorial representation
of eq. (5) for four line segments in a bounded two-
dimensional Euclidean space is shown in fig. 1.
To facilitate the proof that the integral in eq. (3)

is finite, we demand that individual heat kernels are
uniformly bounded by the free heat kernel of Rd,

0<KDs(x,y;β)�K(2πβ)−d/2e−(x−y)
2/(2β), (6)

for some finite K > 0. For a scalar interacting with local
positive potentials this is implied by the Feynman-Kac
theorem [16]: the heat kernel is the transition probability
for Brownian motion and a (positive) potential reduces

Fig. 1: (Colour on-line) The subtracted spectral function
φ̃(N)(β) defined in eq. (5) for a bounded two-dimensional
domain D∅ with four intersecting line segments as objects.
Each pictograph represents the spectral function of the corre-
sponding domain taken with the indicated sign. Various local
features that contribute to the asymptotic expansion of each
spectral function at high temperatures (small β) have been
highlighted: lines of different color correspond to possibly
different, but compatible, boundary conditions or local poten-
tials. Intersections of line segments that differ locally are shown
in different colors. The contribution to the asymptotic expan-
sion due to any particular local feature vanishes: the total
signed number of times any particular line segment contributes
is zero, as is the total signed number of times any particular
vertex occurs. A random walk that crosses only three of the
four segments is shown schematically. It does not contribute to
this irreducible spectral function of a massless scalar field in
the Feynman-Kac path integral.

it. Dirichlet boundary conditions, in particular, may be
imposed on a surface by killing any path that crosses.
Because any condition will only be satisfied by a reduced
number of paths, the bound of eq. (6) may also hold
for objects represented by other types of local boundary
conditions. The following considerations require only that
correlation functions vanish faster than any power of β as
β→ 0 for any finite distance |x−y|> δ > 0. One thus may
be able to relax the uniform bound of eq. (6) considerably.
φs(β) can be interpreted as a bosonic single-particle

partition function at inverse temperature β and a positive
semi-definite spectrum is equivalent to the absence of
tachyons in the causal local theory. The spectral functions
φs(β) of eq. (5) in this case are positive and monotonically
decreasing with β.
For local bosonic field theories, the asymptotic expan-

sion of φs(β) at small β has the general form [17–20],

φs(β ∼ 0)∼
∞∑
ν=−d

(2πβ)ν/2A(ν)s +O(e−�
2
min/(2β)), (7)

where the Hadamard-Minakshisundaram-DeWitt-Seeley

coefficients A
(ν)
s for the domain Ds have canonical length-

dimension (−ν). Note that if eq. (6) holds, exponentially
suppressed terms are associated with classical periodic
paths of finite length �min. We decompose the heat kernel

coefficients A
(ν)
s of eq. (7) into parts arising from local

features of the individual objects and their overlaps,

A(ν)s =
∑
τ∈P(s)

a(ν)τ , (8)
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where the sum extends over all (|s|!) sets in the power
set P(s) of the set s. Equation (8) defines reduced heat

kernel coefficients a
(ν)
τ recursively: the a

(ν)
∅ =A

(ν)
∅ are

the heat kernel coefficients associated with the Euclidean
domain D∅; the a

(ν)
{j} give their change when object j

is inserted; the a
(ν)
{jk} account for further changes in the

heat kernel coefficients due to local overlaps of objects j

and k. Note that the a
(ν)
τ are not the heat kernel coef-

ficients of the domain Dτ —they are their irreducible
part only and arise from arbitrary short correlations near

common intersections of the objects in the set τ . a
(ν)
{jk} = 0

for two disjoint objects j and k, if we assume (as implied by
eq. (6)) that asymptotic correlations over finite distances
|x−y|> δ > 0 vanish faster than any power in β. Simi-
larly, a

(ν)
{123} = 0 if O1 ∩O2 ∩O3 = ∅. a(ν){123} = 0 vanishes

even if the three objects are not pairwise disjoint, since

a
(ν)
{jk} already accounts for contributions due to the inter-
section Oj ∩Ok.
This argument can be extended to N objects. For local

interactions the irreducible correction,

a
(ν)
{1...N} = 0, if O1 ∩ · · · ∩ON = ∅. (9)

Note again that the condition in eq. (9) does not imply
that the objects have to be mutually disjoint (except
for N = 2). It now is a combinatoric matter to show

that for τ � {12 . . . N} the contribution of any a(ν)τ to
the asymptotic expansion of φ̃(N)(β) in eq. (5) vanishes.
Because the other |s| − |τ | objects may be selected from
the remaining N − |τ | in any order, the number of times
the set τ occurs as a subset of the sets in PN (for |s|� |τ |)
is the combination (N−|τ |)!

(N−|s|)!(|s|−|τ |)! = (
N−|τ |!
N−|s|! ). For N > |τ |

the contribution to the asymptotic expansion of φ̃(N)(β)

in eq. (5) proportional to a
(ν)
τ then is

(2πβ)ν/2a(ν)τ

N∑
|s|=|τ |

(−1)N−|s|
(
N − |τ |
N − |s|

)
= 0. (10)

WhenN objects have no common intersection, the asymp-
totic expansion of the irreducible N -body spectral func-
tion φ̃(N)(β) thus has the form,

φ̃(N)(β ∼ 0)∼O(e−�2min/(2β)), (11)

and vanishes faster than any power of β. This may be
explicitly verified in examples like the one shown in fig. 1,
noting that contributions to the asymptotic expansion
proportional to the volume, surfaces, corners, curvatures
etc. . ., all cancel. Together with the fact that the spectral
functions φs(β) decay monotonically and remain bounded
for large β, the asymptotic behavior of eq. (11) implies
that the irreducible Casimir energy in eq. (3) is finite if
the objects have no common intersection.

The subtraction procedure allows one to formally inter-
pret Ẽ(N) as an alternating sum of vacuum energies Es
associated with the domains Ds,

Ẽ(N) =
∑
s∈PN

(−1)N−|s|Es. (12)

The sum on the right side of eq. (12) requires some regu-
larization to be meaningful but, if this procedure does
not explicitly depend on the specific domain Ds (for
instance proper time regularization), the previous consid-
erations show that the irreducible N -body contribution
Ẽ(N) remains well defined as the regularization is removed.
The absence of a power series in the asymptotic expansion
of φ̃(N)(β ∼ 0) also explains why a semi-classical approach
based on classical periodic orbits tends to approximate
Casimir energies fairly well [1–3,21–23]: it reproduces the
leading exponentially suppressed terms of the asymptotic
expansion.

Massless scalar field with local potential
interactions. – This subtraction procedure is particu-
larly transparent for a massless scalar field in a bounded
Euclidean space D∅ whose interaction with N objects
is described by a local (positive) potential V =

∑N
i=1 Vi.

The path integral in this case not only provides for an
alternate proof of the finiteness of the irreducible N -body
contribution but also determines its sign. Using the
world-line approach of [7] for potential scattering, the
Feynman-Kac theorem [16] generally states that

φs(β) =

∫
D∅

dx

(2πβ)d/2
PDs [�β(x)], (13)

where PDs [�β(x)] is the probability for a standard
Brownian bridge1, �β(x) = {xt, 0� t� β; x0 = xβ = x},
that starts at x and returns to x after “time” β, to not
exit Ds and survive its encounters with the objects. The
survival probability of any particular Brownian bridge

in Ds is given by ps(�β(x)) = exp[−
∫ β
0
Vs(xt) dt], where

Vs is the sum of local potentials representing the objects
in Ds. Dirichlet boundary conditions are imposed by
setting ps = 0 if the loop crosses the surface and ps = 1 if
it does not.
The contribution to φ̃(N)(β) of a loop �

(τ)
β (x) that

remains within D∅ and encounters all objects of
τ � {1 . . . N} and no others is

∑
s∈PN
s∩ τ = γ

pγ(−1)N−|s| =
∑
γ∈P(τ)

pγ

N−|τ |+|γ|∑
s=|γ|

(−1)N−s
(
N − |τ |
s− |γ|

)
= 0.

(14)

1A standard Brownian bridge �β(x) = {x+
√
β(W(t)−

tW(1)); 0� t� 1} is generated by a standard d-dimensional
Wiener process with stationary and independent increments for
which W(t > 0) is normally distributed with variance td and
vanishing average.
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It does not contribute to φ̃(N)(β) whatever the survival
probabilities pγ . Only loops that touch all N objects (τ =
{1, . . . , N}) contribute to the alternating sum in eq. (5)
and we have that

φ̃(N)(β) = (−1)N
∫
D∅

dx

(2πβ)d/2
P̃(N)[x;β], (15)

where P̃(N)[x;β] is the probability that a standard
Brownian bridge starting at x and returning to x after
“time” β does not exit D∅ and is killed by every one of
the N objects. A Brownian bridge is killed by every one
of N objects with probability,

p (killed by every one of N objects) =
∑
γ∈PN

(−1)|γ|pγ .

(16)
Equation (16) is the extension to N objects of the
statement,

p (killed by O1 and killed by O2) =
(1− p1)+ (1− p2)− (1− p12) = p∅− p1− p2+ p12.

Note that eqs. (15) and (16) do not require survival
probabilities to be independent (p12 = p1p2), which is true
only for mutually disjoint objects described by potentials
that do not overlap. Since P̃(N) is a positive probability,
the factor of (−1)N in eq. (15) determines the sign
of φ̃(N)(β). (For Dirichlet boundary conditions on all
objects, the sign arises because paths that touch all
N objects contribute only to φ∅(β).) The irreducible
N -body Casimir energy of a scalar field interacting by
local (positive) potentials with N objects that have no
common intersection thus is finite and satisfies

(−1)N Ẽ(N) < 0. (17)

It is remarkable that the sign of Ẽ(N) in this case
depends only on the number of objects: for scattering by
local potentials, the irreducible scalar two-body Casimir
energy, in particular, is negative, independent of any
symmetry [11]. Equation (17) also holds in the limit of
Dirichlet boundary conditions. But eq. (17) evidently [24]
is not correct for boundary conditions, like Neumann’s,
that cannot be described by potentials. Also, the sign of
the N -body Casimir energy does not, of itself, determine
whether Casimir forces are attractive or repulsive. The
subtractions in equation (12) define an irreducible part
of the vacuum energy and it is important to correctly
interpret this difference of vacuum energies. The finite
N -body Casimir energy considered here is the irre-
ducible N -body correction to the vacuum energy that
remains when all irreducible M -body vacuum energies
with 0�M <N have been accounted for. The latter
may themselves be finite but very often are not, and
the sign of Ẽ(N) determined by eq. (17) is that of the
irreducible N -body part only. The irreducible N -body
Casimir energy depends strongly on what one considers

to be the N objects and, in general, does not coincide
with the work needed to assemble these objects from
infinity.
For a scalar field, eq. (15) interprets φ̃(N)(β) as a prob-

ability for a random walk that satisfies certain geometric
conditions. Since they have to touch N objects that have
no common intersection, Brownian bridges that contribute
in eq. (15) necessarily are of finite length. The probabil-
ity P̃(N)[x;β] thus is bounded from above by the shortest
closed classical path of length �min that just touches all
the objects,

0� P̃(N)[x;β]� e−�2min/(2β). (18)

In agreement with the more general argument given
previously, eq. (18) implies that the asymptotic power
series in β of φ̃(N)(β ∼ 0) vanishes to all orders.
Examples. – Consider the example of a scalar field

in Rd satisfying Dirichlet boundary conditions on (d+1)
intersecting, (d− 1)-dimensional hyper-planes. In this case
Ẽ(d+1) indeed is the work required to adiabatically move
the last hyper-plane into position from infinity: Ẽ(d+1)
vanishes as the volume enclosed by the hyper-planes
becomes infinite and depends continuously on their posi-
tion. These are simple consequences of the smoothness and
continuity of the probability for Brownian bridges to cross
all hyper-planes in time β. Equation (12) implies that (infi-
nite) hyper-planes forming a simplex, such as a triangle
(d= 2) or a pyramid (d= 3), tend to repel (triangle) in
even and to attract (pyramid) in odd dimensional spaces.
The contributions to Casimir energies from interior modes
of domains with generalized reflection symmetries have
been obtained analytically as well as numerically [25–27].
None of these references consider only a finite irreducible
part of the three-body Casimir energy and some of the
results disagree. The world-line method [7,15,21] outlined
above could provide fairly accurate numerical estimates
for the irreducible N -body part of the Casimir energy of
a scalar field with Dirichlet boundary conditions on any
generic set of N intersecting hyper-planes without restric-
tion to the contributions from interior modes only. The
irreducible three-body Casimir energies of some weakly
interacting intersecting objects have been analytically
found [28] to be positive and finite.
The Casimir energy for 2d pairwise parallel (d− 1)-

dimensional hyper-planes forming a multi-dimensional
tic-tac-toe–like pattern inRd that encloses an inner hyper-
rectangle with dimensions �1× · · ·× �d was previously
considered in [29], but without separating irreducible

parts. The irreducible 2d-body Casimir energy Ẽ2d# for a
scalar field satisfying Dirichlet conditions on all the hyper-
planes has the simple form

Ẽ2d# =−
�cΓ[(d+1)/2]

4π(d+1)/2

∞∑
n1=1

· · ·
∞∑
nd=1

V#
Ld+1(n)

, (19)
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where V# =
∏d
j=1 �j is the volume of the enclosed hyper-

rectangle and L(n) =
√∑d

j=1 n
2
j�
2
j is half the length of a

classical periodic orbit in its interior that reflects nj times
off the j-th pair of parallel hyper-planes. Only classical
periodic orbits that touch all hyper-planes contribute to

Ẽ2d# . Consistent with the arguments above, Ẽ2
d

# is negative
and finite and remains so in the limit where one or more
dimensions of the rectangle vanish and up to (d− 1) pairs
of hyper-planes coincide. Note that Ẽ2d# (�k→ 0) = 12 Ẽ2

d−1
# .

When any dimension of the rectangle becomes large, Ẽ2d#
vanishes. As mentioned before, this analyticity in the posi-
tion of the objects is expected in the world-line descrip-
tion. It is one of the more interesting characteristics of the
irreducible N -body Casimir energies defined by eqs. (3)
and (5). The irreducible Casimir energy of eq. (19) has
an intrinsic meaning that does not involve the (diver-

gent) subtracted contributions: Ẽ2d# determines higher-
order derivatives of the vacuum energy in much the same
manner as the original Casimir energy gives the force
between two parallel plates,

∂�1∂�2 . . . ∂�dE# = ∂�1∂�2 . . . ∂�d Ẽ2
d

# . (20)

Equation (20) holds because the subtracted contributions
do not depend on all the dimensions of the rectangle.
For d= 2 pairs of parallel plates eq. (20) implies that this
irreducible four-body contribution fully describes certain
stability derivatives of the vacuum energy. In general, irre-
ducible N -body Casimir energies give certain, sometimes
complicated, derivatives of the vacuum energy. Finite irre-
ducible N -body Casimir energies do not depend sensi-
tively on the (quantum) description of intersecting objects
at high scattering energy and the corresponding deriv-
atives of the vacuum energy are reliably estimated by
low-energy effective models that describe the interaction
with the objects in terms of potentials or boundary condi-
tions. The price one pays for this simplified description is
that material-dependent (ultraviolet-sensitive) integration
constants remain undetermined.
An estimate of the magnitude of irreducible three-body

electromagnetic Casimir forces is provided by the Casimir-
Polder force on a polarizable atom due to a bilayer.
Using the results of [30], fig. 2 compares the irreducible
electromagnetic three-body Casimir force on an atom
with the sum of irreducible two-body Casimir forces for
a Si/SiO2 bilayer. It is well known that Casimir forces
are not additive and the three-body correction is not
negligible in this example. It reduces the overall attractive
force by almost 15% for atoms that are about 10 times
the thickness of the SiO2 layer from the surface.

Irreducible Casimir energies in the multiple
scattering expansion. – To address more complicated
geometries in the electromagnetic case, a representation
of irreducible Casimir energies in terms of one-body
scattering operators is required [12]. For three bodies
it is obtained using the generating functional approach

SiO2 4.5; thickness b

Si 11.5; thickness

0 10 20 30 40 50
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Distance of atom to surface b

F
3

F
2

Fig. 2: (Colour on-line) Ratio of the irreducible three-body
Casimir force to the sum of irreducible two-body Casimir forces
on an atom near a Si/SiO2 bilayer. The distance of the atom
from the surface is measured in units of the thickness, b, of the
SiO2 layer.

of [31]. In the notation of [13,28], the irreducible three-
body Casimir energy Ẽ(3) in terms of the free-, 1-, 2- and
3-body Green’s functions is

Ẽ(3) = i

2τ
Tr(lnG123− lnG12− lnG23− lnG13

+ lnG1+ lnG2+ lnG3− lnG∅)
=
−i
2τ
Tr(ln G̃1G̃

−1
123G̃23− ln G̃1G̃−112 G̃2− ln G̃1G̃−113 G̃3),

(21)

where Gs =G∅G̃s is the Green’s function for the domain
Ds. The trace is over space and time, with τ here denoting
the temporal extent. Using G̃−1ij = G̃

−1
i + G̃

−1
j − 11 and

G̃−1123 = G̃
−1
1 + G̃

−1
23 − 11 with G̃i = 11− T̃i, the irreducible

three-body Casimir energy of eq. (21) expressed by one-
body scattering matrices Ti finally is

Ẽ(3) = −i
2τ
Tr(ln[11− T̃1(11− G̃23)]+ ln[X12]− ln[X13])

=
−i
2τ
Tr ln[11−X12T̃1(T̃2T̃1T̃3− G̃2T̃3X23T̃2

−G̃3T̃2X32T̃3)X13]. (22)

Here T̃i = TiG∅ = (11− G̃i), with G∅ the Green’s function
for the domain D∅ with no objects inserted. The operators
Xij satisfy the integral equation

Xij(11− T̃iT̃j) = 11. (23)

The expression in eq. (22) differs from that given in [12]
insofar as all two-body interactions have been subtracted.
The irreducible three-body Casimir energy of eq. (22) is
continuous in the position of the three objects and remains
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finite when two of them overlap and the corresponding
two-body contribution to the vacuum energy diverges. In
fact, every term in eq. (22) requires scattering off all three
objects and is finite. Using the multiple scattering formal-
ism we have calculated [28] the three-body correction of
eq. (22) to the Casimir energy of three semi-transparent
parallel plates. We verified that the irreducible three-body
Casimir energy remains finite when any two of the three
plates coincide. The description of irreducible N -body
Casimir energies by scattering matrices defines them for
any local field theory and, in particular, for the physically
interesting electromagnetic case.
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379; Schröder O., Scardicchio A. and Jaffe R. L.,
Phys. Rev. A, 72 (2005) 012105.

[6] Emig T., Hanke A., Golestanian R. and Kardar M.,
Phys. Rev. Lett., 87 (2001) 260402; Büscher R. and
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