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Abstract – We study vison excitations in a quantum dimer model interpolating between the
Rokhsar-Kivelson models on the square and triangular lattices. In the square-lattice case, the
model is known to be critical and characterized by U(1) topological quantum numbers. Introducing
diagonal dimers brings the model to a Z2 resonating-valence-bond phase. We study variationally
the emergence of vison excitations at low concentration of diagonal dimers, close to the critical
point. We find that, in this regime, vison excitations are large in size and their structure resembles
vortices in type-II superconductors.

Copyright c© EPLA, 2011

Introduction. – The resonating-valence-bond (RVB)
state is one of the most exciting proposals for strongly
correlated phases in two dimensions. Of potential
relevance to frustrated spin systems [1,2] and high-
temperature superconductivity [3,4], it has evaded a
direct identification in experiments and in studies of
realistic models. However, a spinless analogue of the
RVB phase can be systematically studied in quantum
dimer models, where this phase is rigorously confirmed
and accessible to a variety of analytic and numerical
methods [5,6]. Furthermore, quantum dimer models
have also motivated the construction of SU(2) invariant
examples of RVB phases in spinful sytstems [7–9].
The main strongly correlated feature of the RVB phase

is the existence of fractionalized excitations. In a spin
system, in the conjectured RVB phase, two types of
elementary excitations must be present: spinons (spin-1/2
excitations) and visons (Z2 vortices). They have relative
semionic statistics: a −1 factor for an elementary braiding
of a spinon around a vison [10,11]. In dimer models,
spinon excitations are absent (or effectively pushed to
infinitely high energy)1, and only vison excitations and
their combinations appear in the spectrum [14]. Another
consequence of the existence of vison excitations is the

1The role of spinon excitations in quantum dimer models is played
by monomers: they can be included by extending the dimer model.
Such extensions are relevant for possible connections with the theory
of high-temperature superconductivity [3,4,12]; the deconfinement of
monomers may also serve as a test for the liquid phase [6,13].

so-called “topological order”: a degeneracy of the ground
states (and low-lying excitations) for systems on multiply
connected domains [12,15].
An interesting question arises regarding the fate of these

elementary excitations near phase transitions from the
RVB phase to neighboring non-topological phases. Two
generic phase transitions of this sort may be envisioned.
Either singlets (or dimers in dimer models) order into
a valence-bond-crystal, or spins order into some sort of
magnetic order. These two possible paths for the RVB
state were identified in ref. [16] as two conditions for the
topological order in Gutzwiller-projected wave functions.
A field-theoretic model of these phase transitions has been
proposed and analyzed in ref. [17].
In the present paper, we consider another, non-generic

phase transition into a U(1) critical state. This transition
is most easily realized by deforming a model on a bipartite
lattice (with U(1) winding numbers) into one on a non-
bipartite lattice (with the U(1) symmetry broken down to
Z2). While this transition represents a non-generic, “fine-
tuned” situation, it also allows for an analytic treatment of
quantum dynamics near the critical point. Specifically, we
consider an interpolation between the Rokhsar-Kivelson
(RK) models on the square and triangular lattices in such
a way that the exact solvability of the RK ground states
is preserved throughout the interpolation.
In such a model, close to the critical point, we can

variationally construct vison excitations, thus estimating
the size of the vison gap and identifying the associated
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length scale (the vison size). We find that the vison gap
closes at the transition point while the vison size diverges.
The shape of the vison in this limit resembles vortices in
type-II superconductors, with the vison size corresponding
to the magnetic penetration length.
The paper is organized as follows. In the second section,

we briefly review the properties of the RK dimer models
on the square and triangular lattices. In the third section,
we describe the interpolating model which connects those
lattices. In the fourth section, we construct variational
vison excitations near the critical point and discuss their
properties. Finally, in the fifth section we discuss some
interesting aspects of our results.

Rokhsar-Kivelson dimer models on square and
triangular lattices. – The Rokhsar-Kivelson dimer
model on any lattice is defined in the Hilbert space of
all fully packed coverings of the lattice by dimers by the
Hamiltonian [12,18]

HRK = − t | |+ v | | (1)

where the sum is taken over all tetragonal plaquettes of the
lattice. In the present work, we are interested in this model
on the square and triangular lattices in two dimensions,
in which cases the sums are understood as those over all
the plaquettes of the square lattice and over all the two-
plaquette rhombi of the triangular lattice, respectively.
On both lattices, there is a special case of the model

(1) with v= t (called the RK point), in which the ground
state is exactly known and given by all the allowed dimer
configurations with equal amplitudes [12],

|GS〉= 1√
Z

∑
c

|c〉 (2)

(here the sum is taken over all dimer configurations, and
Z is a normalization factor). However, the properties of
this state and of the lowest excitations above it are very
different in the cases of square and triangular lattices, due
to the fact that one of them (square) is bipartite, and the
other one (triangular) is not.
On the square (bipartite) lattice, the correlations are

power-law [19] and the spectrum is gapless: the elementary
excitations are so called resonons with the dispersion
ω(k)∝ k2 [12,20].
On the triangular (nonbipartite) lattice, the correlations

decay exponentially with distance [13,18,21], and the
spectrum is gapped [14,18] with two types of excitations.
One sector of excitations is of the vison type (topological
Z2 vortices), and the other sector is formed by excitations
local in terms of dimer operators (those excitations can
be thought of as composed of an even number of vison
excitations).
This difference between the physics of the RK states

on bipartite and non-bipartite lattices can be traced down
to a larger set of conserved quantities in bipartite dimer

Fig. 1: (Colour on-line) (a) The interpolated model is defined
on the square lattice with links added along one of the diagonal
directions. The dashed line connecting plaquettes α and β
illustrates the point-vison construction (7). (b)–(d) The three
possible dimer-flip processes. The process (b) is contained in
the “square” part of the Hamiltonian (4); the processes (c) and
(d) are included in the “diagonal” part (5).

models. Namely, dimer configurations on bipartite lattices
may be mapped onto a scalar height field [20,22,23],
whose winding numbers provide integer-valued topological
invariants (in the dual variables, those integer winding
numbers may be related to a U(1) gauge symmetry).
On the other hand, on non-bipartite lattices, only a Z2
subgroup of winding numbers survives, thus breaking the
U(1) symmetry down to Z2. The above difference between
bipartite and non-bipartite lattices is well known and
extensively discussed in the literature, and we refer the
reader to other studies for details [5,24,25].

Interpolation between the RK dimer models on
square and triangular lattices. – In our present work,
we analyse an interpolation between the RK points on
the square and triangular quantum lattices. We introduce
this interpolation in such a way that the “RK solvability”
for the ground state is preserved in the interpolating
model. Namely, we construct the interpolation by intro-
ducing dimers along one of the diagonal directions of
the plaquettes of the square lattice (fig. 1(a)). Then by
tuning the fugacity of diagonal dimers, one can interpolate
between the two limiting cases of the square and triangular
lattices.
The Hamiltonian of the interpolating model is thus

chosen to be

H =Hsquare+Hdiag, (3)

where

Hsquare = | | (4)

is the RK Hamiltonian (1) on the square lattice with
v= t= 1 (involving kinetic and potential processes for
square plaquettes depicted in fig. 1(b)) and

Hdiag = κ | µ| | −µ |

(5)
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is the term involving diagonal dimers. The sum is taken
over two types of parallelogram plaquettes depicted in
panels (c) and (d) of fig. 1. The ground state of this
Hamiltonian is then

|GS〉= 1√
Z

∑
c

µD(c)/2 |c〉, (6)

where D(c) is the number of diagonals in a given configu-
ration c.
Note that this is a two-parameter interpolation: the

parameter µ is responsible for the ground state of the
Hamiltonian, while the parameter κ determines the dyna-
mics of diagonal dimers. At µ= κ= 0, the Hamiltonian
reduces to the RK point on the square lattice, while µ=
κ= 1 reproduces the RK point on the isotropic triangular
lattice.
The above model was introduced in ref. [26], where a

simple variational ansatz for the excitations was proposed.
The properties of the ground state (6) were analyzed in the
earlier work ref. [13]. From the Pfaffian technique [27], one
easily deduces the ground-state correlation length ξ ∝ µ−1.
One can expect that at any nonvanishing µ and κ, the
system belongs to the Z2 phase with excitations continu-
ously connected to those on the isotropic triangular lattice.
This scenario has also been proposed in refs. [5] and [24] on
the basis of a field-theoretical analysis: such an interpola-
tion can be interpreted as a U(1) gauge theory coupled to
a charge-two scalar field. In the present paper, we comple-
ment this general analysis with a microscopic construc-
tion of vison excitations in the interpolating model (3)–(5)
close to the critical point (for small deformation parame-
ters µ and κ).
In ref. [26], variational constructions for dimer (resonon)

and vison excitations have been proposed. For the resonon
excitations, a quasi-perturbative construction gives a gap
∆dim ∝ µ2κ (which is likely to be an exact asymptotic
behavior of the dimer gap in our model). At the same time,
an attempt to construct variational vison excitations as
plane waves of point visons proposed in ref. [26] produced
states with a finite variational energy that does not tend
to zero in the limit of the square lattice (µ, κ→ 0). This
suggests (and we will confirm it in the next section) that
point visons are not good variational states, but the actual
vison eigenstates extends over many lattice spacings (in
the limit µ, κ→ 0). The following section is devoted to
constructing such states.

Variational construction of vison excitations. –
To construct variational visons, we first define point visons
and then dress them with local operators to approximate
eigenstates. To define visons, one takes a contour Γαβ
connecting two plaquettes α and β of the lattice2 and
considers the intersection-parity operator (fig. 1) [15],

Vαβ = (−1)number of dimers intersecting Γαβ . (7)

2Here and below we use greek indices to label plaquettes of the
lattice and latin indices to label lattice sites.

One easily verifies i) that this operator is independent of
the contour Γαβ connecting two given points, up to an
overall controlled change of sign; ii) that the commutator
of Vαβ with any local dimer Hamiltonian is concentrated
near the points α and β; and iii) that VαβVβγ = Vαγ .
Therefore one can decompose the operator Vαβ into the
product of two vison operators, which have the structure
of Z2 vortices [14],

Vαβ = VαVβ . (8)

Alternatively, one can understand the operator Vα as the
parity operator (7) with the point β sent to infinity.
Such a point-vison operator produces a state orthogonal

to the original state, but not an eigenstate. To form an
eigenstate (or, more precisely, a wave packet of lowest-
energy eigenstates), one needs to dress a point vison,

|V〉= D̂ Vα |GS〉, (9)

where D̂ is some operator local in terms of dimers.
We may suggest (and this suggestion is further

confirmed by a variational calculation) that, in order to
lower the variational energy, we should spread the vison
flux from one plaquette to a certain region of the lattice.
On the square lattice, the point vison may be written in
terms of the height field as

Vα = exp(iKhα), (10)

where K is some constant depending on the normalization
convention for the height field hα. The spreading of the
vison flux can then be achieved by the dressing operator

D̂= exp

[
i
∑
β

fβ(hβ −hα)
]

(11)

with some weights fβ determining the flux redistribu-
tion. We will further use another expression equivalent to
eq. (11) on the square lattice, but also directly generaliz-
able to the interpolating model (where the height field hα
is no longer defined). Namely, we use the following varia-
tional ansatz:

D̂= exp

[
i
∑
〈jk〉
Ãjknjk

]
, (12)

where the sum is taken over all lattice links and njk
is the dimer density on the link 〈jk〉 (equal to 1 or 0
in the presence/absence of a dimer, respectively). Thus
constructed variational state has a gauge redundancy: a
transformation

Ãjk �→ Ãjk +ϕj +ϕk (13)

does not change the state (9), up to an overall phase.
Therefore, without loss of generality, we may put Ãjk = 0
on all diagonal links and thereby fix the gauge. Finally,
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it will be convenient to convert Ãjk (defined now on the
square lattice) into a vector potential Ajk by

Ajk = (−1)jÃjk. (14)

The variational energy of the “square” part of the
Hamiltonian (4) in the state (9), (12) is given by

Esquare = 〈V|Hsquare |V〉= P (1)flip
∑
β

(1− cosφβ), (15)

where P
(1)
flip is the probability of a given square plaquette

to be flippable (at the RK point on the square lattice,

P
(1)
flip = 1/4) [26] and φβ is the flux at the plaquette β.
This flux is composed of the flux of the vector potential
Ajk and of the flux of the original point vison Vα in eq. (9):

φβ =A12+A23+A34+A41+πδαβ , (16)

where the numerical indices 1 to 4 label the four sites
of the square plaquette β in the cyclic order. Since we
assume that the operator D̂ is local in terms of dimers
and concentrated in a finite region near the plaquette α,
the total flux of the vector potential Ajk must vanish.
Therefore, we find the constraint for the total flux φβ ,∑

β

φβ = π. (17)

On the square lattice (at µ= κ= 0), the total variational
energy is given by eq. (15). Its minimization with the
constraint (17) yields the spreading of the flux over
the whole lattice. Indeed, spreading the flux over N
plaquettes gives N fluxes φβ ∝ 1/N , which results in the
total energy E ∝ 1/N . This variational construction shows
that, indeed, in the limit of the square lattice the vison
excitation becomes unstable and that close to the critical
point the vison size must be large (much larger than the
lattice spacing). In this limit, using the fact that the
optimal fluxes φβ are small, we can expand the cosine in
eq. (15) and write the long-wavelength expression for the
energy,

Esquare =
P
(1)
flip

2

∫
(
∇× 
A)2 d2x. (18)

with the total screened flux∮
xα


A d
x= π (19)

(the latter integral is taken over a small circle surrounding
the position xα of the point vison in eq. (9); this point is
excluded from the integral (18)).
In the interpolating model (at finite µ and κ), the second

term in the Hamiltonian (5) stabilizes the vison. Indeed,
its contribution for our variational state (9), (12) can be
written, in the long-wavelength limit, as

Ediag = 4κµ
2P
(2)
flip

∫

A 2 d2x. (20)

Here we assume that the vector potential 
A is small and
slowly varying on the length scale of one lattice constant.
This is a valid assumption far from the vison center. The
central region gives a contribution of the order κµ2 to the
vison energy, which can be neglected to the leading order,
in comparison with the logarithmically larger contribution

from large distances. The coefficient P
(2)
flip is given by the

probability to find two parallel non-diagonal dimers on
a “skew” (parallelogram) plaquette. To the leading order
in µ, it can be approximated by its value at the RK

point on the square lattice, P
(2)
flip ≈ 0.04542 [26]. The total

variational energy of the vison can now be written as

E =Esquare+Ediag =
P
(1)
flip

2

∫
d2x

[
(
∇× 
A)2+ 1

L2

A2
]
,

(21)

where the new large length scale (“size of vison”) emerges,

L=

√√√√ P (1)flip
8P
(2)
flip

·κ−1/2µ−1. (22)

Remarkably, this variational problem is equivalent to
that of a vortex in a type-II superconductor (with L
corresponding to the London penetration length)3 [30]. In
terms of the “magnetic field” defined as

B = 
∇× 
A, (23)

the variational problem (21) is equivalent to minimizing
the energy

E =
P
(1)
flip

2

∫
d2x

[
B2+L2

(

∇×B

)2]
, (24)

with the total-flux constraint∫
B d2x= π. (25)

One can find a centrally-symmetric solution to this
variational problem,

B(R) =
1

2L2
K0

(
R

L

)
, (26)

where K0 is the modified Bessel (Macdonald) function
and R is the distance from the vison center. The energy
corresponding to this solution is

E =
πP
(1)
flip

4L2
lnL=−πP (2)flipκµ2 ln(κµ2). (27)

Of course, this result for the energy, as well as the long-
wavelength approximation (18)–(21) and (24)–(26), is only
justified if L	 1. The expression (26) for the variational
solution is also only valid for R	 1.
3This analogy assumes a vortex structure translationally invari-

ant along the vortex core (i.e., either at zero temperature or with the
infinite stiffness in the third dimension) and does not imply any simi-
larities in thermodynamic properties. At a more qualitative level, an
anlogy between visons and superconducting vortices has also been
noted previously in the context of the connection between the RVB
phase and superconductivity [28,29].
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Discussion of results. – In the preceding section, we
have constructed a variational vison excitation in a near-
critical RK-type dimer model interpolating between the
RK points on the square and triangular lattices. While,
rigorously speaking, our construction provides an upper
bound for the gap in the vison excitation sector, we
believe that it captures the main qualitative feature of
vison excitations (spreading the vison flux over a large
region of lattice), and therefore conjecture that it also
gives the exact functional dependence on the deformation
parameters µ and κ. Below we discuss several interesting
aspects and implications of our result.
First of all, our variational construction is only based

on the large length scale L	 1, which is equivalent to
κµ2
 1. Thus we do not, in fact, require the individual
smallness of the parameters κ and µ, but only of their
above combination.
Second, we find that the (variational) vison gap closes as

Evison ∝ 1
L2
lnL (28)

at the critical point. This behavior should be compared
to the variational analysis of the dimer gap in the same
model performed in ref. [26]. There it was found that the
dimer gap closes as

Edimer ∝ 1
L2
, (29)

i.e., it is always smaller close to the critical point. This
suggests that visons tend to form bound pairs thus
canceling the logarithmic term in the energy (see also the
discussion of two vison signs below).
Third, our variational vison can have two different signs,

which correspond to the two opposite signs of the smeared
flux B. While there is only one species of the point vison
(fluxes π and −π on one plaquette are identical), there is a
freedom of smearing this flux as either positive or negative
over many plaquettes (of course, there are also options to
smear fluxes ±3π, ±5π, etc., but they are obviously higher
in energy). As a result, we can construct two variational
visons differing by the sign of the field B. This result
may appear surprising in view of our expectation of the
Z2 structure of vison excitations. This paradox can be
resolved by analysing the properties of our variational
visons with respect to the translational symmetries.
As follows from their construction, visons live on a frus-

trated lattice [5,14]. In terms of translational symmetries,
this implies that the elementary translations in the x1
and x2 directions (along the links of the square lattice,
fig. 2(a)) anticommute:

T1T2 =−T2T1. (30)

Therefore, to define a wave vector for vison eigenstates,
one needs to double the unit cell. In terms of k vectors, this
implies the period of π in the directions k1 and k2 for the
dispersion relation. More precisely, to the four k points
(k1, k2), (k1+π, k2), (k1, k2+π), and (k1+π, k2+π),

Fig. 2: (Colour on-line) (a) The two elementary translations of
the lattice, which anticommute for vison states. (b) The k space
for vison excitations. The labeling of the points A, B, and C is
the same as in the isotropic triangular-lattice case considered
in ref. [14] (see fig. 3 there). In our interpolating model, points
C1 and C2 are not degenerate: they only become degenerate
in the triangular-lattice limit (κ= µ= 1). Close to the critical
point (square lattice), the vison minima are located at points
C1. Note that the vison Brillouin zone is only one-half of the
usual dimer Brillouin zone, and therefore it contains two C1
points.

there correspond two linearly independent vison eigen-
states degenerate in energy.
By analyzing the action of the translation operators on

our variational vison states, we conclude that these states
belong to the vicinity of the wave vectors generated by
k= (0, 0). Thus the two vison states of opposite fluxes
correspond to the two degenerate minima of the vison
dispersion relation. Extending the notation of ref. [14],
these minima can be denoted as C1 (which become
degenerate with points C2 in the isotropic triangular limit,
see fig. 2(b)). Note that these points are different from the
energy minima on the isotropic triangular lattice (κ= µ=
1), which are located at points B [14].
Remarkably, the existence of visons of opposite signs can

qualitatively explain the formation of vison bound states
(dimer-like excitations) found numerically in ref. [14].
Indeed, superimposing visons of opposite signs at a short
distance (much shorter than L) compensates the long-
distance logarithmic contribution to the energy (28), thus
producing the energy of the bound state (29).
Fourth, an analogy with type-II superconductors can

be drawn not only in the variational form of the energy
(21) or (24), but also in the existence of two different
length scales. The vison size L in our problem obviously
corresponds to the London penetration length in the
theory of superconductivity. On the other hand, there
is a second length scale ξ (the ground-state correlation
length), which resembles the superconducting coherence
length. In superconductors, the interplay of the two length
scales leads to important physical consequences (difference
between type-I and type-II superconductors). We may
therefore conjecture that in quantum dimer models some
novel effects depending on the relation between the two
lengths may also be possible. Note, however, that this
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analogy is not complete: in our vison construction, the
length scale ξ does not enter, and only the length L affects
the variational state and its energy. In fact, the lower cut-
off of the logarithm in the vison energy (28) is given by
the lattice spacing rather than ξ. It would be interesting
to explore further improvements of our variational ansatz,
which may bring in the length scale ξ (by analogy to the
core of superconducting vortices). We leave this interesting
question for future study.
Another interesting question that remains unexplored

is the dynamics of visons in our model. While exact vison
eigenstates must carry a well-defined wave vector k, our
variational state is localized in space and thus corresponds
to a wave packet of width ∆k∼ 1/L
 1 in the reciprocal
space. We believe that its energy accurately represents the
bottom of the vison band, but the question of the vison
mass remains unresolved in our construction.
While the study reported in the present paper relates to

a very specific model and to a non-generic phase transition
between a RVB phase and a U(1) critical point, we believe
that some of our findings may be generalized to other
systems and situations. In particular, the existence of
two different length scales (ξ and L) is likely to be a
general property of the RVB phase. The divergence of the
vison size may also occur at other types of second-order
phase transitions. We therefore hope that the example
considered in the present paper will provide a guidance
for future studies of the RVB phase in various systems
and models.
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