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Abstract – It has recently been shown that a population of oscillators having identical
environments can exhibit a heterogeneous phase topology termed as chimera state. We extend
this phenomenon to the broader perspective of order-disorder transitions in physical systems with
discrete states. By an exact analytic treatment we show that chimera states can occur in a system
of Ising spins in thermal equilibrium. We also numerically establish the existence of chimera
ordering in 3-dimensional models of layered magnetic materials (such as manganites) suggesting
possible means of experimentally observing it.

Copyright c© EPLA, 2011

Transition to states characterized by simple or complex
ordered patterns is a phenomenon of central importance
in equilibrium statistical physics as well as in dynami-
cal systems far from equilibrium [1,2]. Examples of simple
ordering at thermal equilibrium include the aligned orien-
tation of spins in Ising-like systems, while, in the context
of nonlinear dynamics, this may be observed in the
phase synchronization of coupled oscillators. However,
more complex ordering behavior may also occur in vari-
ous systems under different conditions, especially in the
presence of heterogeneities. A surprising recent finding is
that even homogeneous dynamical systems can exhibit
a robust, partially ordered state characterized by the
coexistence of incoherent, desynchronized domains with
coherent, phase-locked domains [3]. Such chimera states
have so far been observed only in different types of oscil-
lator populations, including complex Ginzburg-Landau
equations, phase oscillators, relaxation oscillators, etc.,
arranged in various connection topologies [4–13]. Given
that “chimera” refers to the co-occurrence of incongruous
elements, one can extend the concept of chimera-like states
to include those characterized by the simultaneous exis-
tence of strongly and weakly ordered regions in an other-
wise homogeneous system. If such a state can occur as the
global free-energy minimum of a system in thermal equilib-
rium, it may widen the scope of experimentally observing
chimera-like order in physical situations.

(a)E-mail: sitabhra@imsc.res.in

It is with this aim in mind that we investigate chimera-
like ordering in systems at thermal equilibrium. Specifi-
cally, we consider spin-models as they are paradigmatic for
different complex systems comprising interacting compo-
nents which can be in any of multiple discrete states.
For example, simple Ising-like models consisting of binary-
state elements are versatile enough to be used for under-
standing processes operating in a wide range of physical
(e.g., magnetic materials [14–16]), biological (e.g., neural
networks [17]) and social (e.g., opinion formation [18,19])
systems. The nature and connection topology of the inter-
actions between the spins decide whether the entire popu-
lation reaches a consensus corresponding to a highly
ordered state, or is in a weakly ordered state (including the
case of complete disorder) that corresponds to the stable
coexistence of contrary orientations. The existence of a
chimera state in such situations would imply that even
though every spin is in an identical environment, different
regions of the system will exhibit widely different degrees
of ordering.
In this paper we report for the first time the occurrence

of chimera order in spin systems. This is characterized for
a system of Ising spins by the simultaneous occurrence of
strongly and weakly ordered regions, as measured by the
magnitude of local magnetizations. The specific system
we consider in detail is globally coupled and comprises
two sub-populations (or modules) with the nature of
interactions between spins depending on whether they
belong to the same or different groups. Our central result
is that when subjected to a uniform magnetic field at a
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finite temperature, one of the sub-populations can become
highly ordered while the other remains weakly ordered.
This is surprising as both the interactions as well as the
external field for the two modules are identical. Moreover,
the chimera state is not a metastable state, but rather
the global minimum of free energy for the system. The
critical behavior of the system associated with the onset
of chimera ordering is established in this paper by an
exact analytical treatment. We also demonstrate by Monte
Carlo (MC) simulations the existence of similar complex
ordering phenomena in three-dimensional spin systems
with nearest neighbor interactions. This opens up the
possibility of experimentally observing chimera states in
layered magnetic systems, e.g., manganites [15,16]. While
the effect of noise on chimera state in coupled oscillators
is not well understood, the chimera order in spin systems
reported here arises in the presence of (thermal) noise;
thus, it is robust and likely to be seen in real physical
situations.
We consider a system of 2N globally coupled Ising spins

arranged into two sub-populations, each having N spins,
at a constant temperature T and subjected to a uniform
external magnetic field H (>0). A dynamical system anal-
ogous to our model has recently been analyzed by Abrams
et al. [8] where two clusters of identical oscillators, each
maintaining a fixed phase difference with the others, was
shown to possess a chimera state. The interaction between
two spins belonging to the same module is ferromagnetic,
having strength J (>0), while that between spins belong-
ing to different modules is antiferromagnetic with strength
−J ′ (where J ′ > 0). It is obvious that in the absence of
an external field, the modules will be completely ordered
in opposite orientations at zero temperature. As temper-
ature is increased, the magnitude of the magnetizations
for the two modules will decrease by the same amount,
eventually becoming zero at a critical temperature, Tc. In
the presence of an external field H that favors spins with
+ve orientation, the module having negative magnetiza-
tion will be subjected to competition between i) the field
H which attempts to align the spins along the +ve direc-
tion and ii) the antiferromagnetic interaction J ′ which is
trying to do the opposite. In the presence of a strong field
H >H0 (whereH0 is a threshold field), as the temperature
is increased from zero, the spins in both modules initially
remain ordered and are oriented in the same direction.
We show below that beyond a certain critical tempera-
ture Tc1, one module becomes more disordered relative to
the other. As the temperature increases further beyond
a second critical temperature Tc2, the two modules again
attain the same magnetization, which decreases gradually
with T (fig. 1(a)). The phase transitions at Tc1 and Tc2
are continuous and are characterized by critical exponents
α and β which are derived exactly below. For H <H0,
the spins in the two modules are oriented at T = 0 in
opposite directions, although having the same magnitude.
At any finite temperature below Tc2, the module whose
spins were initially oriented opposite to the direction of
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Fig. 1: (Colour on-line) (a) Variation of magnetization per spin
of the two modules (m1, m2) with temperature for H >H0.
Between the temperatures Tc1 and Tc2, the magnetizations of
the two modules are different, with the smaller value being
calledm< and the larger onem>. The broken line indicates the
saddle point of the free-energy function corresponding to m1 =
m2 =m0 (see text). The free-energy landscape corresponding
to chimera order at kBT/J = 5 (b) shows that there are
two free-energy minima for m1 �=m2 (the curves are iso-
energy contours and darker shades correspond to lower energy),
whereas outside the range [Tc1, Tc2] there is only one free-
energy minimum (m0) on the m1 =m2 line as is seen for
kBT/J = 8 (c). This is seen explicitly in (d) when the free
energy per spin F is observed along the curve of steepest
descent from m0 (for Tc1 <T <Tc2) or along the curve of
slowest ascent (for T < Tc1 or T > Tc2). All the results shown
in (a–d) are obtained analytically. (e) Time-evolution of the
magnetizations per spin of the two modules, m1 and m2,
shown for MC simulations with N = 100 at kBT/J = 5. In the
chimera ordered state, the system switches due to thermal noise
between the two free-energy minima corresponding to the two
modules exchanging their magnetization states between m>
and m<. In all cases, a= 1 and b=H = 10.

the field is seen to be more disordered than the other
module. The same critical exponents as in the case of H >
H0 are observed for the transition at Tc2, beyond which
the magnetization of the two modules are the same in
magnitude and orientation.
For the system described above, the energy for a given

configuration of spins is

E =−J
∑
i,j,s

i�=j

σisσjs+J
′ ∑
i,j,s,s′
s �=s′

σisσjs′ −H
∑
i,s

σis, (1)

where σis =±1 is the Ising spin on the i-th node (i, j =
1, 2, . . . N) in the s-th module (s, s′ = 1, 2) and J, J ′ > 0.
Since each spin is connected to every other spin, mean-field
treatment is exact for our effectively infinite-dimensional
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system. Thus, the total free energy of the system can be
expressed as

F (m1,m2) = −aN(m21+m22)+ bNm1m2−HN(m1+m2)
+NkBT [S(m1)+S(m2)], (2)

where the magnetizations per spin of the two modules
(ms =

1
N

∑N
i=1 σis) are the order parameters for the

system, S(m) = 12 [(1+m) log(1+m)+ (1−m) log(1−
m)]− log 2 is the entropy term, and a= J(N − 1)/2,
b= J ′N are system parameters (kB being the Boltzmann
constant).
To find the condition for equilibrium at a temperature
T , the free energy can be minimized with respect to m1
and m2 to obtain

−2am1+ bm2−H + kBT
2
log
1+m1
1−m1 = 0, (3)

−2am2+ bm1−H + kBT
2
log
1+m2
1−m2 = 0. (4)

Equations (3), (4) may be expressed in the form m1,2 =
g(m2,1), where we define the one-dimensional map

g(x) =
1

b

[
2ax+H − kBT

2
log
1+x

1−x
]
. (5)

Solutions of g2(x)≡ g(g(x)) = x give the extrema m∗1 and
m∗2 of the free-energy F (eq. (2)). Numerical solution
for the extrema values shows that for suitable parameter
values and H >H0, the system has two critical tempera-
tures Tc1 and Tc2. For temperatures lower than Tc1 and
above Tc2 the only fixed-point of the map g

2 is the unstable
fixed point, g(x) = x, of eq. (5). Thus, this solution corre-
sponds tom1 =m2 ≡m0, where the free energy F (m1,m2)
has a minimum. The value for m0 is obtained from

(−2a+ b)m0−H + kBT
2
log
1+m0
1−m0 = 0. (6)

However, in the temperature range Tc1 <T <Tc2, there
are two types of fixed points of g2: i) a stable fixed point
m1 =m2 =m0 (obtained from eq. (6)) corresponding to
a saddle point of the free-energy function (shown by a
broken line in fig. 1(a)), and ii) the pair of unstable
fixed points m1 �=m2 which form a period-2 orbit of
eq. (5) corresponding to a minimum of the free energy F
(shown by solid lines in fig. 1 (a)). As one of (m1, m2)
is higher and the other low, we obtain a chimera state
where one module is disordered (m<) relative to the
other module (m>). The chimera state occurs through
subcritical pitchfork bifurcations of the map g2 as the
temperature is increased above Tc1 or decreased below
Tc2 (see footnote

1). For H <H0, the system exhibits
chimera ordering for T > 0 and it has a single critical
temperature at Tc2 above which the magnetizations of
the two modules become the same.
1It is of interest to note that the chimera state in oscillator arrays

occur via saddle-node bifurcation [4,8,20].

By observing the free-energy F (m1,m2) landscape in
the range 0�m1,m2 � 1, we obtain a clear physical pict-
ure of the transition to chimera ordering (fig. 1(b), (c)).
The homogeneous statem1 =m2 =m0 is a local extremum
(i.e., ∂F/∂m1,2 = 0) for the range of parameters consid-
ered here. However, its nature changes from a free-energy
minimum to a saddle point as the temperature is increased
beyond Tc1 and again changes back to a minimum when
temperature exceeds Tc2. This is seen by looking at the
matrix of the second derivatives of free energy per site
with respect to m1,m2:

H∣∣
m0
=

(
A b
b A

)
, (7)

where A=−2a+ kBT 1
1−m20 . The eigenvalues of this

matrix are λ+ =A+ b along the m1 =m2 line and
λ− =A− b in the direction perpendicular to it (parallel
to m1 =−m2 line). Below Tc1 and above Tc2 both
eigenvalues are positive indicating that m0 is a minimum
(fig. 1(c)). The transition to chimera ordering occurs
in the range Tc1 <T <Tc2 when the smaller eigenvalue
λ− becomes negative while the other eigenvalue remains
positive, indicating that m0 is now a saddle point. This
gives us an implicit relation for Tc as the temperature
where λ− = 0, which gives

kBTc = 2(2a+ b)(1−m20).

Numerical investigation of the landscape indicates that
this transition is accompanied by the creation of two
minima away from the m1 =m2 line (fig. 1(b)). These
minima are symmetrically placed about the m1 =m2
line (as F (m1,m2) = F (m2,m1)) and correspond to the
two coexisting chimera states C1 :m1 =m>,m2 =m< and
C2 :m1 =m<,m2 =m>. The two minima are separated
by an energy barrier ∆=F (m0,m0)−F (m>,m<) which
for a finite system can be crossed by thermal energy
(fig. 1(d)). This switching behavior between the two
chimera states has a characteristic time τ ∼ exp(∆/kBT )
which is indeed observed from MC simulations in small
systems (fig. 1(e))2. Note that each minimum corresponds
to a state having a specific arrangement of both highly
ordered and weakly ordered regions, and hence is unlike
the minima seen in phase-coexistence state of systems such
as metamagnets, where each of the minima corresponds to
a homogeneous phase (ordered or disordered)3.

2For N = 100, we observe that τ > 103 MC steps for a range
of temperatures. For larger systems, e.g., N = 1000, switching
was not observed for the duration of our simulations, which is
consistent with the exponential divergence of τ as one approaches the
thermodynamic limit. This follows from the exponential dependence
of τ on the energy barrier height, and the fact that free energy is
proportional to N for given values of a, b, H and T as can be seen
from eq. (2).
3See, e.g., sect. 4 of ref. [15]. Note that the spins in the weakly

ordered module change their state continuously with time and the
auto-correlation function of each spin in this region rapidly decays
to zero.
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Fig. 2: (Colour on-line) (a) Phase diagram in the magnetic field
(H), temperature (kBT/J) and anti-ferromagnetic coupling
(b) parameter space obtained by numerical minimization of
free energy for a= 1 with the region in which chimera order-
ing occurs being indicated. A cross-section along the H-T
plane for b= 15 is shown in (b). The broken line indicates
H = 16, for which the critical temperatures are shown by
dotted lines.

Figure 2 shows the region in (H-T -b) parameter space
where chimera ordering is observed in our system as
obtained by numerical minimization of the free energy.
Temperature-induced transitions are always continuous
whose exponents are analytically derived below. To inves-
tigate the critical behavior of the system around Tc1 and
Tc2, we shall use the order parameters

p1 =m1−m2 and p2 = 2m0− (m1+m2).
For Tc1 <T <Tc2 where the chimera ordering is observed,
as mentioned earlier the free-energy minima are atm1 and
m2, while m0 corresponds to a saddle point. The order
parameters p1 and p2 are non-zero in this region and zero
elsewhere. When p1, p2 are small, we solve for them using
eqs. (3), (4) and (6) by expressing m1 and m2 in terms of
p1, p2, and obtain

p1 ∝ |T −Tc|1/2 and |p2| ∝ |T −Tc|. (8)

Thus, as T → T+c1 or T → T−c2, the order parameters vanish
continuously with exponents β = 1/2 for p1 and β = 1 for
p2. Similar calculations for the field-induced transition
at finite temperature yield identical critical exponents.
Note that at zero temperature the field-induced transition
is of first order and its discontinuous nature can be
shown exactly by analyzing the free energy. The values
of the exponents for all continuous transitions have been
confirmed by us numerically.
We have also analyzed the critical behavior of the

specific heat C =−T ∂2F0
∂T 2
, where F0 is the equilibrium

free energy at a given a, b, H and T . Although it
involves both first- and second-order derivatives of p1 and
p2, as the most dominant term is ∂

2p1/∂T
2, the diver-

gence at critical temperature is characterized by exponent
α= 3/2:C ∝ |T −Tc1,c2|−3/2.
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Fig. 3: (Colour on-line) (a) Schematic diagram of the
3-dimensional layered spin system with ferromagnetic (anti-
ferromagnetic) interactions within layers, J (between layers,
J ′) indicated by continuous (broken) lines. In the chimera state
alternate layers show strong and weak order. (b) The time-
evolution in MC steps of the magnetization of each of the
32 layers of a 3-dimensional system, with every layer having
128× 128 spins, showing chimera ordering for kBT/J = 3.
(c) The magnetizations of different layers of the 128× 128× 32
spin system at different temperatures. Chimera ordering is
manifested as different values of |m| for alternate layers (e.g.,
at kBT/J = 3). In all cases J = J

′ = 1 and H = 1.8.

While the system we have considered so far has
the advantage of being amenable to exact analytical
treatment, we have also numerically analyzed spin models
which are closer to real magnetic materials. We have
performed MC simulation studies of a three-dimensional
Ising spin model with nearest-neighbor interactions having
an anisotropic nature (fig. 3(a)). The system emulates
a layered magnetic system comprising multiple layers of
two-dimensional spin arrays stacked on top of each other,
with interactions along a plane being ferromagnetic (J)
and those between planes anti-ferromagnetic (−J ′). One
example of such a system is FeCl2 where the exchange
integral between Fe electron clouds is such that the Fe
atoms within the same layer interact ferromagnetically
while those in different layers interact antiferromagnet-
ically [15]. Figure 3(b), (c) shows chimera ordering in
such a 3-dimensional spin system with periodic bound-
ary conditions and starting from random initial spin
configurations. As seen from fig. 3(b), the chimera state
appears relatively rapidly and persists for the duration of
the simulation. Similar behavior was observed in other
systems having different sizes, parameters and interaction
structure, indicating that chimera ordering is a robust
phenomenon that should be possible to observe in an
experimental magnetic system. Note that in this system
the chimera ordering is observed with nearest-neighbor
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interactions, while, for systems of coupled oscillators,
chimera states have so far been observed only with
spatially non-local coupling.
In summary, we have shown the existence of a novel

complex ordering behavior that we term chimera order in
analogy with the simultaneous occurrence of coherent and
incoherent behavior in dynamical systems. For a system
of two clusters of Ising spins, where the spins are coupled
ferromagnetically (anti-ferromagnetically) to all spins in
the same (other) cluster, subjected to a uniform external
magnetic field at a given temperature, chimera ordering is
manifested as a much higher magnetization in one cluster
compared to the other. To illustrate the wider implication
of our result we can use the analogy of two communities of
individuals who are deciding between a pair of competing
choices. The interactions of an agent with other members
of its own community strongly favor consensus while that
with members of a different community are antagonistic.
Thus, given that every individual is exposed to the
same information or external environment, we would
expect that unanimity about a particular choice in one
community will imply the same for the contrary choice
in the other community. However, the occurrence of the
chimera order suggests that under certain conditions,
when given the same external stimulus we may observe
consensus in one community while the other is fragmented.
The extension of the concept of chimera state as defined in
our paper suggests that it may be experimentally observed
in physical systems. Our demonstration of chimera order
in a three-dimensional spin system with nearest-neighbor
interactions indicate that a possible experimental example
can be layered magnetic materials (e.g., manganites)
having different types of interactions between and within
layers [15,16]. Although the present paper looks at the
case of two competing choices, it is possible to extend
the analysis to q-state Potts spin dynamics. Given the
wider applicability of spin models for studying ordering
in different contexts, one can consider other connection
topologies as well as mesoscopic features such as the
occurrence of multiple modules (>2) and hierarchical
organization [21].
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